基于卷积神经网络和循环神经网络的高光谱图像分类方法

    公开(公告)号:CN108460342B

    公开(公告)日:2021-01-01

    申请号:CN201810113878.4

    申请日:2018-02-05

    Abstract: 本发明公开了一种基于卷积网和循环神经网络的高光谱图像分类方法,主要解决现有技术中高光谱图像分类精度低的问题。本发明具体步骤如下:(1)构造三维的卷积神经网络;(2)构造循环神经网络;(3)对待分类的高光谱图像矩阵进行预处理;(4)生成训练数据集和测试数据集;(5)利用训练数据集训练网络;(6)提取测试数据集空间特征和光谱特征;(7)融合空间特征和光谱特征;(8)对测试数据集进行分类。本发明引入三维卷积神经网络和循环神经网络提取高光谱图像的空间特征和光谱特征,融合两种特征进行分类,具有针对高光谱图像分类问题精度高的优点。

    基于卷积网和循环神经网络的高光谱图像分类方法

    公开(公告)号:CN108460342A

    公开(公告)日:2018-08-28

    申请号:CN201810113878.4

    申请日:2018-02-05

    Abstract: 本发明公开了一种基于卷积网和循环神经网络的高光谱图像分类方法,主要解决现有技术中高光谱图像分类精度低的问题。本发明具体步骤如下:(1)构造三维的卷积神经网络;(2)构造循环神经网络;(3)对待分类的高光谱图像矩阵进行预处理;(4)生成训练数据集和测试数据集;(5)利用训练数据集训练网络;(6)提取测试数据集空间特征和光谱特征;(7)融合空间特征和光谱特征;(8)对测试数据集进行分类。本发明引入三维卷积神经网络和循环神经网络提取高光谱图像的空间特征和光谱特征,融合两种特征进行分类,具有针对高光谱图像分类问题精度高的优点。

Patent Agency Ranking