基于深度网络和稀疏Fisher矢量的图像分类方法

    公开(公告)号:CN110210562B

    公开(公告)日:2022-06-10

    申请号:CN201910473936.9

    申请日:2019-06-02

    Abstract: 本发明提出了一种基于深度网络和稀疏Fisher矢量的图像分类方法,旨在解决现有技术中存在的的准确率较低的技术问题,实现步骤为:获取训练数据集和待分类数据集;构建深度神经网络A,对深度神经网络A进行训练,得到深度神经网络B;提取深度神经网络B中第二个全连接层的图像特征,对特征建立高斯混合模型Z1,然后对Z1中的特征向量进行稀疏Fisher矢量编码;用稀疏Fisher编码后的特征对应的图像对深度神经网络B进行训练,得到深度神经网络C;将待分类数据集输入深度神经网络C进行图像分类。本发明提高了分类的准确率和分类效率,可用于对医疗和交通等领域图像的分类。

    基于深度网络和稀疏Fisher矢量的图像分类方法

    公开(公告)号:CN110210562A

    公开(公告)日:2019-09-06

    申请号:CN201910473936.9

    申请日:2019-06-02

    Abstract: 本发明提出了一种基于深度网络和稀疏Fisher矢量的图像分类方法,旨在解决现有技术中存在的的准确率较低的技术问题,实现步骤为:获取训练数据集和待分类数据集;构建深度神经网络A,对深度神经网络A进行训练,得到深度神经网络B;提取深度神经网络B中第二个全连接层的图像特征,对特征建立高斯混合模型Z1,然后对Z1中的特征向量进行稀疏Fisher矢量编码;用稀疏Fisher编码后的特征对应的图像对深度神经网络B进行训练,得到深度神经网络C;将待分类数据集输入深度神经网络C进行图像分类。本发明提高了分类的准确率和分类效率,可用于对医疗和交通等领域图像的分类。

    基于度量学习的细粒度图像分类方法

    公开(公告)号:CN110516700B

    公开(公告)日:2022-12-06

    申请号:CN201910648466.5

    申请日:2019-07-18

    Abstract: 本发明公开了一种基于度量学习的细粒度图像分类方法,实现的步骤是:(1)构建单阶段多盒检测网络SSD;(2)生成训练集;(3)构建两输入‑三输出网络;(4)训练两输入‑三输出网络;(5)对细粒度图像中的目标进行分类。本发明构建了两输入‑三输出网络,在生成训练集时对细粒度图像中的目标进行检测并按照矩形框的尺寸选取图像内容,克服了现有技术训练网络时需要借助物体标注框和部位标注点,对细粒度图像进行分类时需要提供图像标注框,分类过程繁琐的问题,使得本发明能够自动检测到细粒度图像中的目标,而且本发明可对任意细粒度图像进行分类,应用范围更加广泛。

    基于深度特征自适应相关滤波的目标跟踪方法

    公开(公告)号:CN110223323B

    公开(公告)日:2022-03-04

    申请号:CN201910473963.6

    申请日:2019-06-02

    Abstract: 本发明公开了一种基于深度特征自适应相关滤波的目标跟踪方法,主要解决当目标模糊、目标发生遮挡导致跟踪失败的跟踪问题。本发明实现的步骤如下:(1)确定待跟踪目标的初始位置;(2)提取深度特征;(3)构建第一帧自适应相关滤波器模型;(4)预测下一帧帧图像的目标位置;(5)更新自适应相关滤波器参数;(6)更新自适应相关滤波器的权值;(7)判断当前帧视频图像是否为待跟踪视频图像序列的最后一帧视频图像,若是,则执行步骤(8),否则,执行步骤(4);(8)结束对待跟踪目标的跟踪。本发明通过基于深度特征自适应相关滤波的目标跟踪方法,预测待跟踪目标位置。

    基于双相关滤波和隶属度加权决策的深度目标跟踪方法

    公开(公告)号:CN110097009B

    公开(公告)日:2021-07-06

    申请号:CN201910368524.9

    申请日:2019-05-05

    Abstract: 本发明提出了一种基于双相关滤波和隶属度加权决策的深度目标跟踪方法,用于解决现有技术中存在的目标定位准确率较低的技术问题,并提高跟踪速度,实现步骤为:(1)构建多个基于双相关的相关滤波器模型;(2)设定包含待跟踪目标的图像序列参数;(3)对每个相关滤波器的隶属度进行初始化;(4)获取n个基于双相关的相关滤波器模型W1,W2,...Wk...,Wn的值;(5)计算每个相关滤波器对第t+1帧图像中待跟踪目标的中心位置的估计值;(6)基于隶属度加权决策方法计算t+1帧图像中待跟踪目标的中心位置(xt+1,yt+1);(7)获取深度目标跟踪结果;(8)计算每个相关滤波器的隶属度并执行步骤(4)。

    基于度量学习的细粒度图像分类方法

    公开(公告)号:CN110516700A

    公开(公告)日:2019-11-29

    申请号:CN201910648466.5

    申请日:2019-07-18

    Abstract: 本发明公开了一种基于度量学习的细粒度图像分类方法,实现的步骤是:(1)构建单阶段多盒检测网络SSD;(2)生成训练集;(3)构建两输入-三输出网络;(4)训练两输入-三输出网络;(5)对细粒度图像中的目标进行分类。本发明构建了两输入-三输出网络,在生成训练集时对细粒度图像中的目标进行检测并按照矩形框的尺寸选取图像内容,克服了现有技术训练网络时需要借助物体标注框和部位标注点,对细粒度图像进行分类时需要提供图像标注框,分类过程繁琐的问题,使得本发明能够自动检测到细粒度图像中的目标,而且本发明可对任意细粒度图像进行分类,应用范围更加广泛。

    基于深度特征自适应相关滤波的目标跟踪方法

    公开(公告)号:CN110223323A

    公开(公告)日:2019-09-10

    申请号:CN201910473963.6

    申请日:2019-06-02

    Abstract: 本发明公开了一种基于深度特征自适应相关滤波的目标跟踪方法,主要解决当目标模糊、目标发生遮挡导致跟踪失败的跟踪问题。本发明实现的步骤如下:(1)确定待跟踪目标的初始位置;(2)提取深度特征;(3)构建第一帧自适应相关滤波器模型;(4)预测下一帧帧图像的目标位置;(5)更新自适应相关滤波器参数;(6)更新自适应相关滤波器的权值;(7)判断当前帧视频图像是否为待跟踪视频图像序列的最后一帧视频图像,若是,则执行步骤(8),否则,执行步骤(4);(8)结束对待跟踪目标的跟踪。本发明通过基于深度特征自适应相关滤波的目标跟踪方法,预测待跟踪目标位置。

    基于双相关滤波和隶属度加权决策的深度目标跟踪方法

    公开(公告)号:CN110097009A

    公开(公告)日:2019-08-06

    申请号:CN201910368524.9

    申请日:2019-05-05

    Abstract: 本发明提出了一种基于双相关滤波和隶属度加权决策的深度目标跟踪方法,用于解决现有技术中存在的目标定位准确率较低的技术问题,并提高跟踪速度,实现步骤为:(1)构建多个基于双相关的相关滤波器模型;(2)设定包含待跟踪目标的图像序列参数;(3)对每个相关滤波器的隶属度进行初始化;(4)获取n个基于双相关的相关滤波器模型W1,W2,...Wk...,Wn的值;(5)计算每个相关滤波器对第t+1帧图像中待跟踪目标的中心位置的估计值;(6)基于隶属度加权决策方法计算t+1帧图像中待跟踪目标的中心位置(xt+1,yt+1);(7)获取深度目标跟踪结果;(8)计算每个相关滤波器的隶属度并执行步骤(4)。

Patent Agency Ranking