基于车载激光雷达点云的三维目标自适应检测方法及系统

    公开(公告)号:CN113284163A

    公开(公告)日:2021-08-20

    申请号:CN202110516998.0

    申请日:2021-05-12

    Abstract: 本发明公开一种基于车载激光雷达点云的三维目标自适应检测方法及系统,将激光雷达点云栅格化后提取不同尺度的三维特征图和鸟瞰视角下的二维特征图;对激光雷达点云进行最远点采样得到稀疏采样点,分别将原始点云特征、不同尺度的三维特征图、鸟瞰视角下的二维特征图整合至稀疏采样点,丰富采样点特征表达;以采样点特征为输入,通过偏移预测和目标自适应的邻域划分方法生成与目标更加匹配的候选参考点及其对应特征;通过采样点特征和候选参考点特征分别得到目标候选框的分类和回归预测结果;最后进行目标候选框参数精细化;本发明能够在检测精度上超越所有现有基于稀疏候选框的方法和大多数基于稠密候选框的方法。

    基于车载激光雷达点云的三维目标自适应检测方法及系统

    公开(公告)号:CN113284163B

    公开(公告)日:2023-04-07

    申请号:CN202110516998.0

    申请日:2021-05-12

    Abstract: 本发明公开一种基于车载激光雷达点云的三维目标自适应检测方法及系统,将激光雷达点云栅格化后提取不同尺度的三维特征图和鸟瞰视角下的二维特征图;对激光雷达点云进行最远点采样得到稀疏采样点,分别将原始点云特征、不同尺度的三维特征图、鸟瞰视角下的二维特征图整合至稀疏采样点,丰富采样点特征表达;以采样点特征为输入,通过偏移预测和目标自适应的邻域划分方法生成与目标更加匹配的候选参考点及其对应特征;通过采样点特征和候选参考点特征分别得到目标候选框的分类和回归预测结果;最后进行目标候选框参数精细化;本发明能够在检测精度上超越所有现有基于稀疏候选框的方法和大多数基于稠密候选框的方法。

Patent Agency Ranking