-
公开(公告)号:CN109635944A
公开(公告)日:2019-04-16
申请号:CN201811582530.6
申请日:2018-12-24
Applicant: 西安交通大学
CPC classification number: G06N3/063 , G06N3/0454
Abstract: 一种稀疏卷积神经网络加速器及实现方法,将片外DRAM中的稀疏网络的连接权重读入权值输入缓冲区,通过权值解码单元进行解码后存储在权值片上全局缓冲区;将神经元读入神经元输入缓冲区,然后将读入的神经元通过神经元解码单元进行解码后存储在神经元片上全局缓冲区;按照神经网络当前层的配置参数确定PE计算单元阵列的计算模式,将解码后排列好的神经元和连接权重发送给PE计算单元;计算神经元和连接权重的乘积;在本发明加速器中,PE单元中的乘法器全部被移位器代替,所有的基本模块都可以根据网络计算和硬件资源进行配置,因此具有速度快、功耗低、资源占用小以及数据利用率高的优点。
-
公开(公告)号:CN109635944B
公开(公告)日:2020-10-27
申请号:CN201811582530.6
申请日:2018-12-24
Applicant: 西安交通大学
Abstract: 一种稀疏卷积神经网络加速器及实现方法,将片外DRAM中的稀疏网络的连接权重读入权值输入缓冲区,通过权值解码单元进行解码后存储在权值片上全局缓冲区;将神经元读入神经元输入缓冲区,然后将读入的神经元通过神经元解码单元进行解码后存储在神经元片上全局缓冲区;按照神经网络当前层的配置参数确定PE计算单元阵列的计算模式,将解码后排列好的神经元和连接权重发送给PE计算单元;计算神经元和连接权重的乘积;在本发明加速器中,PE单元中的乘法器全部被移位器代替,所有的基本模块都可以根据网络计算和硬件资源进行配置,因此具有速度快、功耗低、资源占用小以及数据利用率高的优点。
-