-
公开(公告)号:CN107273970B
公开(公告)日:2020-06-19
申请号:CN201710331448.5
申请日:2017-05-11
Applicant: 西安交通大学
Abstract: 本发明公开一种支持在线学习的卷积神经网络的可重构平台及其构建方法,可重构平台包括输入卷积池化级和全连接级;输入卷积池化级包括若干卷积环和采样环;全连接级包括若干全连接环;卷积环由若干卷积神经元连接成环;采样环由若干采样神经元连接成环;全连接环由若干全连接神经元连接成环;将每层神经元的环状结构通过路由相连组成完整网络,构成一种支持在线学习的卷积神经网络的可重构平台。环上顺时针或逆时针链路传递特征值,反向链路传递反向计算误差,环与环之间通过路由器节点相连接,自上而下传递特征值,自下而上传递反向误差。本发明可支持网络在线学习,充分发掘卷积神经网络的算法并行度和存储局域性,能够提升计算系统的整体性能。
-
公开(公告)号:CN107273969B
公开(公告)日:2020-06-19
申请号:CN201710331078.5
申请日:2017-05-11
Applicant: 西安交通大学
Abstract: 本发明公开一种参数化可扩展的神经网络全连接层多层互连结构,包括若干层全连接层,每层全连接层例化了若干基本单元;一个基本单元连接一个路由器,同一全连接层中的基本单元经过路由器相连,形成全连接环;全连接环的路由器上下相连形成一种参数化可扩展的神经网络全连接层多层互连结构,支持双向的数据传递(前向推理,反向学习)。本发明采用可配置的全连接基本单元作为全连接层硬件实现的基础,用户可以根据实际使用的神经网络的需求通过设置参数控制生成多个基本单元并互连的方式完成其网络中全连接层的设计实现和并行加速;本发明的设计考虑了数据流水线,缩短了系统运行时钟周期,灵活配置全连接层的结构和规模,便于系统的快速部署实现。
-
公开(公告)号:CN107273970A
公开(公告)日:2017-10-20
申请号:CN201710331448.5
申请日:2017-05-11
Applicant: 西安交通大学
Abstract: 本发明公开一种支持在线学习的卷积神经网络的可重构平台及其构建方法,可重构平台包括输入卷积池化级和全连接级;输入卷积池化级包括若干卷积环和采样环;全连接级包括若干全连接环;卷积环由若干卷积神经元连接成环;采样环由若干采样神经元连接成环;全连接环由若干全连接神经元连接成环;将每层神经元的环状结构通过路由相连组成完整网络,构成一种支持在线学习的卷积神经网络的可重构平台。环上顺时针或逆时针链路传递特征值,反向链路传递反向计算误差,环与环之间通过路由器节点相连接,自上而下传递特征值,自下而上传递反向误差。本发明可支持网络在线学习,充分发掘卷积神经网络的算法并行度和存储局域性,能够提升计算系统的整体性能。
-
公开(公告)号:CN107273969A
公开(公告)日:2017-10-20
申请号:CN201710331078.5
申请日:2017-05-11
Applicant: 西安交通大学
Abstract: 本发明公开一种参数化可扩展的神经网络全连接层多层互连结构,包括若干层全连接层,每层全连接层例化了若干基本单元;一个基本单元连接一个路由器,同一全连接层中的基本单元经过路由器相连,形成全连接环;全连接环的路由器上下相连形成一种参数化可扩展的神经网络全连接层多层互连结构,支持双向的数据传递(前向推理,反向学习)。本发明采用可配置的全连接基本单元作为全连接层硬件实现的基础,用户可以根据实际使用的神经网络的需求通过设置参数控制生成多个基本单元并互连的方式完成其网络中全连接层的设计实现和并行加速;本发明的设计考虑了数据流水线,缩短了系统运行时钟周期,灵活配置全连接层的结构和规模,便于系统的快速部署实现。
-
-
-