一种基于MOOC数据中辍学行为的因果关系挖掘方法

    公开(公告)号:CN110866162A

    公开(公告)日:2020-03-06

    申请号:CN201910959395.0

    申请日:2019-10-10

    Abstract: 本发明公开了一种基于MOOC数据中辍学行为的因果关系模型的建立方法,通过分析MOOC日志数据集和构建影响辍学行为的候选自变量,定性分析所述候选自变量与因变量之间的相关性;设计所述候选自变量与因变量之间依赖性的定量度量方法,来构建无向图,得到由自变量和因变量组成的节点集构成的无向图,使用基于互信息的局部因果网络结构发现算法,通过无向图中基于回归分析方程剔除错误变量和基于条件独立性测试生成局部网络,构建面向辍学行为的带方向的局部因果网络结构,对于任何一种目标学习效果变量,都可以通过无向图生成、错误节点剔除和局部网络结构构建来进行关于该学习效果的局部因果网络结构的构建工作,进行学习效果的因果关系挖掘。

    一种基于MOOC数据中辍学行为的因果关系挖掘方法

    公开(公告)号:CN110866162B

    公开(公告)日:2021-11-19

    申请号:CN201910959395.0

    申请日:2019-10-10

    Abstract: 本发明公开了一种基于MOOC数据中辍学行为的因果关系模型的建立方法,通过分析MOOC日志数据集和构建影响辍学行为的候选自变量,定性分析所述候选自变量与因变量之间的相关性;设计所述候选自变量与因变量之间依赖性的定量度量方法,来构建无向图,得到由自变量和因变量组成的节点集构成的无向图,使用基于互信息的局部因果网络结构发现算法,通过无向图中基于回归分析方程剔除错误变量和基于条件独立性测试生成局部网络,构建面向辍学行为的带方向的局部因果网络结构,对于任何一种目标学习效果变量,都可以通过无向图生成、错误节点剔除和局部网络结构构建来进行关于该学习效果的局部因果网络结构的构建工作,进行学习效果的因果关系挖掘。

Patent Agency Ranking