一种基于彩色图引导的深度图恢复及视点合成优化方法

    公开(公告)号:CN108805841A

    公开(公告)日:2018-11-13

    申请号:CN201810600927.7

    申请日:2018-06-12

    Abstract: 本发明公开了一种基于彩色图引导的深度图恢复及视点合成优化方法,首先对不一致区域进行探测,检测输入深度图的边沿,并将边沿进行膨胀处理,将膨胀后的边沿标记为潜在不一致区域,然后基于迭代重加权最小二乘算法构建权重,权重构建完成后进行整体求解并更新深度图,根据结果判断是否达到设定的迭代次数,如果达到则输出深度图结束计算,否则重新进行对不一致区域探测。本发明能够抑制强噪声,并且能够修复深度图和彩色图不一致区域,提高深度图和彩色图的一致性,恢复出正确的深度图边界,对提高合成视图的质量有重要的指导意义。同时对于一致区域的去噪和保边能力强,采用成熟的迭代加权最小二乘模型,对参数的适应性强,提高了模型的鲁棒性。

    一种基于彩色图引导的深度图恢复及视点合成优化方法

    公开(公告)号:CN108805841B

    公开(公告)日:2021-01-19

    申请号:CN201810600927.7

    申请日:2018-06-12

    Abstract: 本发明公开了一种基于彩色图引导的深度图恢复及视点合成优化方法,首先对不一致区域进行探测,检测输入深度图的边沿,并将边沿进行膨胀处理,将膨胀后的边沿标记为潜在不一致区域,然后基于迭代重加权最小二乘算法构建权重,权重构建完成后进行整体求解并更新深度图,根据结果判断是否达到设定的迭代次数,如果达到则输出深度图结束计算,否则重新进行对不一致区域探测。本发明能够抑制强噪声,并且能够修复深度图和彩色图不一致区域,提高深度图和彩色图的一致性,恢复出正确的深度图边界,对提高合成视图的质量有重要的指导意义。同时对于一致区域的去噪和保边能力强,采用成熟的迭代加权最小二乘模型,对参数的适应性强,提高了模型的鲁棒性。

    一种基于引导滤波器的鲁棒深度图结构重建和去噪方法

    公开(公告)号:CN111223059A

    公开(公告)日:2020-06-02

    申请号:CN202010007506.0

    申请日:2020-01-04

    Abstract: 本发明公开了一种基于引导滤波器的鲁棒深度图结构重建和去噪方法,对结构错误区域进行探测,检测输入深度图经过大窗口的引导滤波和小窗口的引导滤波差别较大的地方,由于大窗口下引导滤波可以出现羽化效果,而小窗口的引导滤波仅起到平滑的作用,因此差别较大的区域可以认为是结构错误区域,标记为潜在结构错误区域,然后基于迭代重加权最小二乘算法构建权重,权重构建完成后进行整体求解并更新深度图,根据结果判断是否达到设定的迭代次数,如果达到则输出深度图结束计算,否则重新进行对结构错误区域探测。本发明能够抑制强噪声,并且能够修复深度图和彩色图结构错误区域,提高深度图和彩色图的一致性,恢复出正确的深度图边界,对提高合成视图的质量有重要的指导意义。

    一种基于引导滤波器的鲁棒深度图结构重建和去噪方法

    公开(公告)号:CN111223059B

    公开(公告)日:2022-02-11

    申请号:CN202010007506.0

    申请日:2020-01-04

    Abstract: 本发明公开了一种基于引导滤波器的鲁棒深度图结构重建和去噪方法,对结构错误区域进行探测,检测输入深度图经过大窗口的引导滤波和小窗口的引导滤波差别较大的地方,由于大窗口下引导滤波可以出现羽化效果,而小窗口的引导滤波仅起到平滑的作用,因此差别较大的区域可以认为是结构错误区域,标记为潜在结构错误区域,然后基于迭代重加权最小二乘算法构建权重,权重构建完成后进行整体求解并更新深度图,根据结果判断是否达到设定的迭代次数,如果达到则输出深度图结束计算,否则重新进行对结构错误区域探测。本发明能够抑制强噪声,并且能够修复深度图和彩色图结构错误区域,提高深度图和彩色图的一致性,恢复出正确的深度图边界,对提高合成视图的质量有重要的指导意义。

Patent Agency Ranking