-
公开(公告)号:CN106019478A
公开(公告)日:2016-10-12
申请号:CN201610317845.2
申请日:2016-05-12
Applicant: 西安交通大学
CPC classification number: G02B6/2551 , G01H9/004
Abstract: 本发明一种高灵敏度熔锥耦合型微纳光纤超声检测系统及其耦合器制作方法。所述耦合器制作方法包括如下步骤,步骤1,采用平行夹具固定两根单模光纤,经15‑30s的氢焰预热后,再进行熔融拉锥获得强耦合状态的微纳光纤耦合器;步骤2,卸去强耦合状态的微纳光纤耦合器两端的预拉力,以放松状态悬空于V型石英封装槽中进行固定封装;步骤3,将强耦合状态的微纳光纤耦合器的两端用粘贴剂固定至长条状V型石英封装槽内;粘贴剂充满V型石英封装槽的两端部,得到封装熔锥型微纳光纤耦合器,其两端粘贴剂之间的悬空部分为光耦合区。所述系统包括依次连接的激光光源、上述的耦合器、以及光电转换器、差分放大电路和示波器。
-
公开(公告)号:CN111141830B
公开(公告)日:2021-04-20
申请号:CN201911384466.5
申请日:2019-12-28
Applicant: 西安交通大学
Abstract: 本发明一种基于微纳耦合光纤传感器的线性定位系统及方法,所述包括以下步骤:S1:对一个微纳耦合光纤传感器获得的声发射信号,通过Gabor时频变换得到A0模态的声发射信号;S2:将A0模态的声发射信号进行快速傅里变换后得到初始频率,从而得到初始频率的到达时间和初始速度;S3:从有效等值线上读取设定的各频率分量及各频率分量对应的时间为实际到达时间;S4:根据群速度曲线得到各频率分量对应的实际速度;根据时间、速度和距离的关系,由初始频率的初始速度和各频率分量的实际速度,得到含有声源距离的各频率分量的理论到达时间;S5:实际到达时间和理论到达时间之间的误差函数取最小值时对应的声源距离取值,为声源的线性定位距离。
-
公开(公告)号:CN111141829A
公开(公告)日:2020-05-12
申请号:CN201911384452.3
申请日:2019-12-28
Applicant: 西安交通大学
Abstract: 本发明涉及一种基于微纳耦合光纤传感器的平面定位方法,该方法包括:设置微纳耦合光纤传感器的工作角度;通过耦合型光纤传感器对待测平板工件采集数据;基于A0模式的误差目标函数法对发声源线性定位;根据所采集传感器的数量选择不同的平面定位方式;两个传感器,采用三角函数平面定位法;三个传感器,采用误差目标函数平面定位法。本发明适用于在板状结构中的发声源平面定位,相对于传统采用压电式传感器的平面定位方法,本发明能够提高系统抗电磁干扰能力和平面定位的准确度。
-
公开(公告)号:CN106019478B
公开(公告)日:2019-07-23
申请号:CN201610317845.2
申请日:2016-05-12
Applicant: 西安交通大学 , 苏州电器科学研究院股份有限公司
Abstract: 本发明一种高灵敏度熔锥耦合型微纳光纤超声检测系统及其耦合器制作方法。所述耦合器制作方法包括如下步骤,步骤1,采用平行夹具固定两根单模光纤,经15‑30s的氢焰预热后,再进行熔融拉锥获得强耦合状态的微纳光纤耦合器;步骤2,卸去强耦合状态的微纳光纤耦合器两端的预拉力,以放松状态悬空于V型石英封装槽中进行固定封装;步骤3,将强耦合状态的微纳光纤耦合器的两端用粘贴剂固定至长条状V型石英封装槽内;粘贴剂充满V型石英封装槽的两端部,得到封装熔锥型微纳光纤耦合器,其两端粘贴剂之间的悬空部分为光耦合区。所述系统包括依次连接的激光光源、上述的耦合器、以及光电转换器、差分放大电路和示波器。
-
公开(公告)号:CN111141829B
公开(公告)日:2021-04-20
申请号:CN201911384452.3
申请日:2019-12-28
Applicant: 西安交通大学
Abstract: 本发明涉及一种基于微纳耦合光纤传感器的平面定位方法,该方法包括:设置微纳耦合光纤传感器的工作角度;通过耦合型光纤传感器对待测平板工件采集数据;基于A0模式的误差目标函数法对发声源线性定位;根据所采集传感器的数量选择不同的平面定位方式;两个传感器,采用三角函数平面定位法;三个传感器,采用误差目标函数平面定位法。本发明适用于在板状结构中的发声源平面定位,相对于传统采用压电式传感器的平面定位方法,本发明能够提高系统抗电磁干扰能力和平面定位的准确度。
-
公开(公告)号:CN111141830A
公开(公告)日:2020-05-12
申请号:CN201911384466.5
申请日:2019-12-28
Applicant: 西安交通大学
Abstract: 本发明一种基于微纳耦合光纤传感器的线性定位系统及方法,所述包括以下步骤:S1:对一个微纳耦合光纤传感器获得的声发射信号,通过Gabor时频变换得到A0模态的声发射信号;S2:将A0模态的声发射信号进行快速傅里变换后得到初始频率,从而得到初始频率的到达时间和初始速度;S3:从有效等值线上读取设定的各频率分量及各频率分量对应的时间为实际到达时间;S4:根据群速度曲线得到各频率分量对应的实际速度;根据时间、速度和距离的关系,由初始频率的初始速度和各频率分量的实际速度,得到含有声源距离的各频率分量的理论到达时间;S5:实际到达时间和理论到达时间之间的误差函数取最小值时对应的声源距离取值,为声源的线性定位距离。
-
公开(公告)号:CN105841794A
公开(公告)日:2016-08-10
申请号:CN201610317010.7
申请日:2016-05-12
Applicant: 西安交通大学
CPC classification number: G01H9/004 , G01N29/14 , G01N2291/0234 , G01N2291/0237
Abstract: 本发明提供一种基于优化的耦合型光纤传感器平板超声源定位方法及系统。所述系统包括激光光源,耦合型光纤传感器,两个光电探测器,差分放大电路和数据采集系统;耦合型光纤传感器的一个输入端连接激光光源,两个输出端分别连接第一、二光电探测器,两个光电探测器的输出端依次连接差分放大电路和数据采集系统;耦合型光纤传感器包括光纤声发射传感器,封装V型槽和封装UV胶;耦合型光纤传感器由两条单模光纤过耦合形成,其两端分别通过UV胶封装在V型槽中;UV胶封装截止处为传感器耦合区起始处。所述方法提取A0模态两个频率分量的到达时间和传播速度,由一个平板超声信号计算得到超声源的计算距离,实现单个传感器的线性定位。
-
公开(公告)号:CN105841794B
公开(公告)日:2019-05-03
申请号:CN201610317010.7
申请日:2016-05-12
Applicant: 西安交通大学 , 苏州电器科学研究院股份有限公司
Abstract: 本发明提供一种基于优化的耦合型光纤传感器平板超声源定位方法及系统。所述系统包括激光光源,耦合型光纤传感器,两个光电探测器,差分放大电路和数据采集系统;耦合型光纤传感器的一个输入端连接激光光源,两个输出端分别连接第一、二光电探测器,两个光电探测器的输出端依次连接差分放大电路和数据采集系统;耦合型光纤传感器包括光纤声发射传感器,封装V型槽和封装UV胶;耦合型光纤传感器由两条单模光纤过耦合形成,其两端分别通过UV胶封装在V型槽中;UV胶封装截止处为传感器耦合区起始处。所述方法提取A0模态两个频率分量的到达时间和传播速度,由一个平板超声信号计算得到超声源的计算距离,实现单个传感器的线性定位。
-
-
-
-
-
-
-