-
公开(公告)号:CN117017288B
公开(公告)日:2024-03-19
申请号:CN202310707364.2
申请日:2023-06-14
Applicant: 西南交通大学
Abstract: 本发明公开了一种跨被试情绪识别模型及其训练方法、情绪识别方法、设备,训练方法基于神经网络结构实现,神经网络结构包括两个独立且结构相同的子神经网络;训练方法包括以下步骤:S1:获取脑电原始信号,并对其进行微分熵特征提取;S2:将提取的微分熵特征划分为多个数据组,并将其中一个作为目标域数据,剩余的作为源域数据;S3:假设当前源域数据分别为Si和Sj,目标域数据为T,其中,Si为子神经网络一的输入,Sj为子神经网络二的输入;S4:建立子神经网络的目标函数;S5:建立跨被试情绪识别模型的损失函数;S6:进行神经网络训练,直至跨被试情绪识别模型的损失函数最小化。本发明获得的跨被试情绪识别模型更加轻量化、识别准确率更高。
-
公开(公告)号:CN117017288A
公开(公告)日:2023-11-10
申请号:CN202310707364.2
申请日:2023-06-14
Applicant: 西南交通大学
Abstract: 本发明公开了一种跨被试情绪识别模型及其训练方法、情绪识别方法、设备,训练方法基于神经网络结构实现,神经网络结构包括两个独立且结构相同的子神经网络;训练方法包括以下步骤:S1:获取脑电原始信号,并对其进行微分熵特征提取;S2:将提取的微分熵特征划分为多个数据组,并将其中一个作为目标域数据,剩余的作为源域数据;S3:假设当前源域数据分别为Si和Sj,目标域数据为T,其中,Si为子神经网络一的输入,Sj为子神经网络二的输入;S4:建立子神经网络的目标函数;S5:建立跨被试情绪识别模型的损失函数;S6:进行神经网络训练,直至跨被试情绪识别模型的损失函数最小化。本发明获得的跨被试情绪识别模型更加轻量化、识别准确率更高。
-