一种基于深度学习网络与半监督学习的冰川识别模型建模方法

    公开(公告)号:CN115796045A

    公开(公告)日:2023-03-14

    申请号:CN202211583963.X

    申请日:2022-12-10

    Abstract: 本发明公开了一种基于深度学习网络与半监督学习的冰川识别模型建模方法,属于测绘技术领域。本发明包括步骤S1:建立冰川识别遥感影像数据集,分割冰川识别遥感影像数据集,得到有标签数据与无标签数据;S2:采用深度残差网络构建深度学习卷积神经网络模型,对深度学习卷积神经网络模型进行预训练;S3:采用半监督学习模型对数据进行一致性正则化,得到半监督学习数据集,通过半监督学习数据集深度学习卷积神经网络模型结合,构建冰川识别模型。本发明实现从高分辨率遥感影像中自动化地识别与检测冰川面积变化,把人力研究识别、查找的工作交给经过深度学习模型训练的计算机去批量系统地完成,为分析冰川消融速度及监测全球气候变化提供依据。

Patent Agency Ranking