序列推荐方法、装置及计算机可读存储介质

    公开(公告)号:CN111522962A

    公开(公告)日:2020-08-11

    申请号:CN202010277778.2

    申请日:2020-04-09

    Applicant: 苏州大学

    Abstract: 本申请公开了一种序列推荐方法、装置及计算机可读存储介质。其中,方法包括预先将用户集‑项目集构成的双向图和知识图谱结合并统一为混合知识图谱;将待推荐用户和混合知识图谱的历史交互序列输入序列推荐模型中;该模型包括知识图嵌入模块、图注意力网络和循环神经网络;知识图嵌入模块将混合知识图谱的所有节点编码为向量,图注意力网络根据每个节点的嵌入和相邻节点的嵌入递归更新各节点的嵌入以捕获全局的用户‑项目和项目‑项目之间的关系;循环神经网络对用户交互序列项目进行编码以获取用户的动态偏好;最后根据该模型的输出确定待推荐用户的推荐序列信息,从而基于知识图中实体与局部图上下文之间的高阶依赖关系进行高准确度的序列推荐。

    序列推荐方法、装置及计算机可读存储介质

    公开(公告)号:CN111522962B

    公开(公告)日:2023-05-02

    申请号:CN202010277778.2

    申请日:2020-04-09

    Applicant: 苏州大学

    Abstract: 本申请公开了一种序列推荐方法、装置及计算机可读存储介质。其中,方法包括预先将用户集‑项目集构成的双向图和知识图谱结合并统一为混合知识图谱;将待推荐用户和混合知识图谱的历史交互序列输入序列推荐模型中;该模型包括知识图嵌入模块、图注意力网络和循环神经网络;知识图嵌入模块将混合知识图谱的所有节点编码为向量,图注意力网络根据每个节点的嵌入和相邻节点的嵌入递归更新各节点的嵌入以捕获全局的用户‑项目和项目‑项目之间的关系;循环神经网络对用户交互序列项目进行编码以获取用户的动态偏好;最后根据该模型的输出确定待推荐用户的推荐序列信息,从而基于知识图中实体与局部图上下文之间的高阶依赖关系进行高准确度的序列推荐。

Patent Agency Ranking