-
公开(公告)号:CN109033865B
公开(公告)日:2021-10-01
申请号:CN201810637636.5
申请日:2018-06-20
Applicant: 苏州大学
Abstract: 本发明公开了一种空间众包中隐私保护的任务分配方法,涉及三方实体,包括空间众包平台、代理商和工人,使用基于匿名的数据收集协议,将用户数据安全地发送给空间众包平台;使用基于反向拍卖的任务分配算法来帮助空间众包平台生成任务分配和奖励报酬方案,并且保证用户的诚实性。通过上述方式,本发明提供的空间众包中隐私保护的任务分配方法,使用基于匿名的数据收集协议来保证工人位置数据的安全性,使用基于反向拍卖的任务分配算法来保证工人的诚实性,是基于半可信的模型,有着高安全性、高效性的优点,在空间众包领域有着极其光明的应用前景。
-
公开(公告)号:CN110008402B
公开(公告)日:2021-09-03
申请号:CN201910131400.9
申请日:2019-02-22
Applicant: 苏州大学
IPC: G06F16/9535 , G06F16/9536 , G06Q50/00
Abstract: 本发明公开了一种基于社交网络的去中心化矩阵分解的兴趣点推荐方法,包括:(1)将用户浏览兴趣点的签到数据存储在每个用户自己的用户端;(2)用户在自己的用户端训练模型。通过上述方式,本发明基于社交网络的去中心化矩阵分解的兴趣点推荐方法通过将用户对兴趣点的签到数据保存在自己的用户端,并且在用户端进行矩阵分解模型的训练,解决了集中式矩阵分解模型存储和计算资源浪费的问题,不存在用户个人隐私泄露的风险,从而实现了保护隐私、提高安全系数的功能,在基于社交网络的去中心化矩阵分解的兴趣点推荐方法的普及上有着广泛的市场前景。
-
公开(公告)号:CN110008402A
公开(公告)日:2019-07-12
申请号:CN201910131400.9
申请日:2019-02-22
Applicant: 苏州大学
IPC: G06F16/9535 , G06Q50/00
Abstract: 本发明公开了一种基于社交网络的去中心化矩阵分解的兴趣点推荐方法,包括:(1)将用户浏览兴趣点的签到数据存储在每个用户自己的用户端;(2)用户在自己的用户端训练模型。通过上述方式,本发明基于社交网络的去中心化矩阵分解的兴趣点推荐方法通过将用户对兴趣点的签到数据保存在自己的用户端,并且在用户端进行矩阵分解模型的训练,解决了集中式矩阵分解模型存储和计算资源浪费的问题,不存在用户个人隐私泄露的风险,从而实现了保护隐私、提高安全系数的功能,在基于社交网络的去中心化矩阵分解的兴趣点推荐方法的普及上有着广泛的市场前景。
-
公开(公告)号:CN109033865A
公开(公告)日:2018-12-18
申请号:CN201810637636.5
申请日:2018-06-20
Applicant: 苏州大学
CPC classification number: G06F21/6209 , H04L9/0869 , H04L63/0428 , H04L69/22
Abstract: 本发明公开了一种空间众包中隐私保护的任务分配方法,涉及三方实体,包括空间众包平台、代理商和工人,使用基于匿名的数据收集协议,将用户数据安全地发送给空间众包平台;使用基于反向拍卖的任务分配算法来帮助空间众包平台生成任务分配和奖励报酬方案,并且保证用户的诚实性。通过上述方式,本发明提供的空间众包中隐私保护的任务分配方法,使用基于匿名的数据收集协议来保证工人位置数据的安全性,使用基于反向拍卖的任务分配算法来保证工人的诚实性,是基于半可信的模型,有着高安全性、高效性的优点,在空间众包领域有着极其光明的应用前景。
-
-
-