-
公开(公告)号:CN118690276B
公开(公告)日:2024-12-13
申请号:CN202411165214.4
申请日:2024-08-23
Applicant: 苏州大学
IPC: G06F18/2415 , G06F18/213 , G06F18/214 , G06N3/0464 , G06N3/094 , G01M13/045 , B61K9/08
Abstract: 本发明公开了高铁轮轨运维技术领域的一种高铁轮轨感知对抗学习损伤识别方法,方法包括:获取待识别的振动信号;将所述振动信号输入预训练的高铁轮轨损伤识别模型,所述高铁轮轨损伤识别模型包括深度特征提取器和开放式损伤分类器;利用高铁轮轨损伤识别模型,通过深度特征提取器提取振动信号的高维特征,基于所述高维特征通过开放式损伤分类器得到对应多种损伤类型的多维预测概率数据,并根据对应多种损伤类型的多维预测概率数据确定损伤类型识别结果。本发明能够解决通过深度学习进行高铁轮轨系统损伤识别时,新型损伤会被错误识别为已有的损伤类型而导致准确率下降,难以保障高铁运行的安全性和效率的技术问题。
-
公开(公告)号:CN118690276A
公开(公告)日:2024-09-24
申请号:CN202411165214.4
申请日:2024-08-23
Applicant: 苏州大学
IPC: G06F18/2415 , G06F18/213 , G06F18/214 , G06N3/0464 , G06N3/094 , G01M13/045 , B61K9/08
Abstract: 本发明公开了高铁轮轨运维技术领域的一种高铁轮轨感知对抗学习损伤识别方法,方法包括:获取待识别的振动信号;将所述振动信号输入预训练的高铁轮轨损伤识别模型,所述高铁轮轨损伤识别模型包括深度特征提取器和开放式损伤分类器;利用高铁轮轨损伤识别模型,通过深度特征提取器提取振动信号的高维特征,基于所述高维特征通过开放式损伤分类器得到对应多种损伤类型的多维预测概率数据,并根据对应多种损伤类型的多维预测概率数据确定损伤类型识别结果。本发明能够解决通过深度学习进行高铁轮轨系统损伤识别时,新型损伤会被错误识别为已有的损伤类型而导致准确率下降,难以保障高铁运行的安全性和效率的技术问题。
-