-
公开(公告)号:CN103500228A
公开(公告)日:2014-01-08
申请号:CN201310505323.1
申请日:2013-10-23
Applicant: 苏州大学
IPC: G06F17/30
CPC classification number: G06F17/30867
Abstract: 一种协同过滤推荐算法中改进的相似性度量方法,包括以下步骤。S1、创建用户集合U={U1,U2,…,Un}中n个用户对项目集合I={I1,I2,…,Im}中m个项目的评分矩阵R(n×m),以Ra,i表示用户Ua对项目Ii的评分,其中Ua∈U,Ii∈I。S2、分别计算用户Ua和Ub之间的相似度sim(Ua,Ub),项目Ii和Ij之间的相似度sim(Ii,Ij),定义相似度影响因子ε,使sim'(Ua,Ub)=ε×sim(Ua,Ub),sim'(Ii,Ij)=ε×sim(Ii,Ij)。S3、在[0,1]区间取参数λ,根据所述λ、ε、用户对项目的评分均值、用户之间的相似度及项目之间的相似度,预测用户对项目的评分。
-
公开(公告)号:CN104182518A
公开(公告)日:2014-12-03
申请号:CN201410420928.5
申请日:2014-08-25
Applicant: 苏州大学
CPC classification number: G06F17/30867 , G06Q30/0202
Abstract: 本申请公开了一种协同过滤推荐方法及装置,方法为:预先建立表征用户间近邻关系、项目间近邻关系、用户与项目间实际行为关系和用户与项目间预测行为关系的第一矩阵、第二矩阵、第三矩阵和第四矩阵,利用用户实际行为数据更新第三和第四矩阵,利用用户预测行为数据更新第四矩阵,利用第三和第四矩阵更新第一和第二矩阵,选取用户与项目的实际行为关系值为零的组合,对选取的用户与项目进行评分预测,判断评分值与上一轮预测的评分值的偏差是否小于阀值,若否,则将其作为用户预测行为数据返回更新第四矩阵步骤,直至预测评分值小于阀值,依据该评分值确定是否将项目推荐给用户。本申请考虑了用户间、项目间的关系,使得推荐结果更精确。
-
公开(公告)号:CN104182518B
公开(公告)日:2017-12-26
申请号:CN201410420928.5
申请日:2014-08-25
Applicant: 苏州大学
Abstract: 本申请公开了一种协同过滤推荐方法及装置,方法为:预先建立表征用户间近邻关系、项目间近邻关系、用户与项目间实际行为关系和用户与项目间预测行为关系的第一矩阵、第二矩阵、第三矩阵和第四矩阵,利用用户实际行为数据更新第三和第四矩阵,利用用户预测行为数据更新第四矩阵,利用第三和第四矩阵更新第一和第二矩阵,选取用户与项目的实际行为关系值为零的组合,对选取的用户与项目进行评分预测,判断评分值与上一轮预测的评分值的偏差是否小于阀值,若否,则将其作为用户预测行为数据返回更新第四矩阵步骤,直至预测评分值小于阀值,依据该评分值确定是否将项目推荐给用户。本申请考虑了用户间、项目间的关系,使得推荐结果更精确。
-
-