-
公开(公告)号:CN110097188B
公开(公告)日:2021-07-06
申请号:CN201910362862.1
申请日:2019-04-30
Applicant: 科大讯飞股份有限公司
Abstract: 本申请公开了一种模型训练方法、工作节点及参数更新服务器,该方法包括:根据第一模型的任务类型,确定第一模型中各个网络层的目标计算精度,并基于第一模型中各个网络层的目标计算精度,利用第一模型的训练数据进行前向计算和后向计算,得到第一模型的各个网络层的网络参数的目标梯度值,以便根据该目标梯度值对第二模型进行参数更新。由于不同任务类型所需求的计算精度不同,因而,根据任务类型确定的目标计算精度更适应于该任务类型对精度的需求,从而使得在第一模型基于目标计算精度进行计算的过程中,不但可以减少在工作节点上的资源消耗和提升在工作节点上的计算加速,还可以降低因第一模型的计算精度损失带来的对第二模型的训练效果损失。
-
公开(公告)号:CN110097188A
公开(公告)日:2019-08-06
申请号:CN201910362862.1
申请日:2019-04-30
Applicant: 科大讯飞股份有限公司
Abstract: 本申请公开了一种模型训练方法、工作节点及参数更新服务器,该方法包括:根据第一模型的任务类型,确定第一模型中各个网络层的目标计算精度,并基于第一模型中各个网络层的目标计算精度,利用第一模型的训练数据进行前向计算和后向计算,得到第一模型的各个网络层的网络参数的目标梯度值,以便根据该目标梯度值对第二模型进行参数更新。由于不同任务类型所需求的计算精度不同,因而,根据任务类型确定的目标计算精度更适应于该任务类型对精度的需求,从而使得在第一模型基于目标计算精度进行计算的过程中,不但可以减少在工作节点上的资源消耗和提升在工作节点上的计算加速,还可以降低因第一模型的计算精度损失带来的对第二模型的训练效果损失。
-
公开(公告)号:CN109919315B
公开(公告)日:2021-10-01
申请号:CN201910188467.6
申请日:2019-03-13
Applicant: 科大讯飞股份有限公司
IPC: G06N5/04
Abstract: 本申请提供了一种神经网络的前向推理方法、装置、设备及存储介质,其中,方法包括:将目标神经网络划分为多个子网络,任一子网络包括目标神经网络的至少一个隐层,在推理平台的硬件设备上创建多个子网络分别对应的推理实例和推理引擎,基于多个子网络分别对应的推理实例和推理引擎,对目标神经网络进行前向推理。由于一个推理引擎只负责神经网络的一部分隐层,同一时刻可以有多个数据输入在不同的推理引擎内并行执行,因此,本申请提供的前向推理方法具有较高的推理效率和数据吞吐量,且推理平台的硬件资源得到充分利用。
-
公开(公告)号:CN109919315A
公开(公告)日:2019-06-21
申请号:CN201910188467.6
申请日:2019-03-13
Applicant: 科大讯飞股份有限公司
IPC: G06N5/04
Abstract: 本申请提供了一种神经网络的前向推理方法、装置、设备及存储介质,其中,方法包括:将目标神经网络划分为多个子网络,任一子网络包括目标神经网络的至少一个隐层,在推理平台的硬件设备上创建多个子网络分别对应的推理实例和推理引擎,基于多个子网络分别对应的推理实例和推理引擎,对目标神经网络进行前向推理。由于一个推理引擎只负责神经网络的一部分隐层,同一时刻可以有多个数据输入在不同的推理引擎内并行执行,因此,本申请提供的前向推理方法具有较高的推理效率和数据吞吐量,且推理平台的硬件资源得到充分利用。
-
-
-