-
公开(公告)号:CN113298030B
公开(公告)日:2022-08-02
申请号:CN202110664516.6
申请日:2021-06-16
Applicant: 福州大学
Abstract: 本发明提出一种轻量级隐私保护外包脑电信号特征提取方法,其允许边缘服务器在无法获取明文脑电信号数据的前提下对用户上传的脑电信号数据进行特征提取;同时,为了实现对脑电信号的隐私保护,设计了一系列安全外包计算协议,以此来实现对加密脑电信号的特征提取;此外,为了提高脑电信号的信噪比,利用TRCA来对脑电信号进行空间滤波;最后,为了减少用户与服务器之间的响应延迟,引入了边缘计算技术。保证了不泄露原始脑电信号数据有关隐私的信息。该技术方案在确保脑电信号中的相关信息隐私安全性的同时,实现了外包脑电信号的特征提取,且降低了用户本地计算和通信成本。
-
公开(公告)号:CN111291411B
公开(公告)日:2022-12-23
申请号:CN202010092004.2
申请日:2020-02-13
Applicant: 福州大学
Abstract: 本发明提出了一种基于卷积神经网络的安全视频异常检测系统及方法,包括以下四方:内容所有者、边缘计算服务器、随机数提供者和授权用户;内容所有者将每个密文视频帧和密文用户访问控制策略分割成两个随机秘密分享,并分别发送给两个边缘计算服务器进行存储;边缘计算服务器用于执行CNN模型的训练,为授权用户提供异常检测,并验证授权用户的访问有效性;随机数提供者分别为两台边缘计算服务器提供具有加性分享性质的随机数;授权用户向边缘计算服务器发送密文请求并接收来自两台边缘计算服务器的密文检测结果。其在确保原始视频中的相关信息隐私安全性的同时,实现了外包视频的安全异常检测,且降低了用户本地计算和通信成本。
-
公开(公告)号:CN111291411A
公开(公告)日:2020-06-16
申请号:CN202010092004.2
申请日:2020-02-13
Applicant: 福州大学
Abstract: 本发明提出了一种基于卷积神经网络的安全视频异常检测系统及方法,包括以下四方:内容所有者、边缘计算服务器、随机数提供者和授权用户;内容所有者将每个密文视频帧和密文用户访问控制策略分割成两个随机秘密分享,并分别发送给两个边缘计算服务器进行存储;边缘计算服务器用于执行CNN模型的训练,为授权用户提供异常检测,并验证授权用户的访问有效性;随机数提供者分别为两台边缘计算服务器提供具有加性分享性质的随机数;授权用户向边缘计算服务器发送密文请求并接收来自两台边缘计算服务器的密文检测结果。其在确保原始视频中的相关信息隐私安全性的同时,实现了外包视频的安全异常检测,且降低了用户本地计算和通信成本。
-
公开(公告)号:CN111241561B
公开(公告)日:2022-05-03
申请号:CN202010024855.3
申请日:2020-01-10
Applicant: 福州大学
Abstract: 本发明涉及一种基于隐私保护的用户可认证外包图像去噪方法,包括步骤:可信第三方TTP给内容所有者CO、授权用户AU和两个边缘计算服务器ES1、ES2分配相关的密钥;CO首先使用由TTP分配的密钥对含噪图像进行加密,并将加密后的图像发送到第一边缘计算服务器ES1;第二边缘计算服务器ES2辅助第一边缘计算服务器ES1进行密文图像去噪,并计算所得结果发送给第一边缘计算服务器ES1;AU向相应的CO提出图像使用请求,并从第一边缘计算服务器ES1获得相应的去噪密文图像,在自身的私钥帮助下,授权用户AU解密恢复出所需的明文去噪图像。本发明确保用户隐私数据安全同时提供图像去噪服务;且降低了用户本地计算、通信开销,其密文去噪效果几乎等同于明文域性能。
-
公开(公告)号:CN113298030A
公开(公告)日:2021-08-24
申请号:CN202110664516.6
申请日:2021-06-16
Applicant: 福州大学
Abstract: 本发明提出一种轻量级隐私保护外包脑电信号特征提取方法,其允许边缘服务器在无法获取明文脑电信号数据的前提下对用户上传的脑电信号数据进行特征提取;同时,为了实现对脑电信号的隐私保护,设计了一系列安全外包计算协议,以此来实现对加密脑电信号的特征提取;此外,为了提高脑电信号的信噪比,利用TRCA来对脑电信号进行空间滤波;最后,为了减少用户与服务器之间的响应延迟,引入了边缘计算技术。保证了不泄露原始脑电信号数据有关隐私的信息。该技术方案在确保脑电信号中的相关信息隐私安全性的同时,实现了外包脑电信号的特征提取,且降低了用户本地计算和通信成本。
-
公开(公告)号:CN111241561A
公开(公告)日:2020-06-05
申请号:CN202010024855.3
申请日:2020-01-10
Applicant: 福州大学
Abstract: 本发明涉及一种基于隐私保护的用户可认证外包图像去噪方法,包括步骤:可信第三方TTP给内容所有者CO、授权用户AU和两个边缘计算服务器ES1、ES2分配相关的密钥;CO首先使用由TTP分配的密钥对含噪图像进行加密,并将加密后的图像发送到第一边缘计算服务器ES1;第二边缘计算服务器ES2辅助第一边缘计算服务器ES1进行密文图像去噪,并计算所得结果发送给第一边缘计算服务器ES1;AU向相应的CO提出图像使用请求,并从第一边缘计算服务器ES1获得相应的去噪密文图像,在自身的私钥帮助下,授权用户AU解密恢复出所需的明文去噪图像。本发明确保用户隐私数据安全同时提供图像去噪服务;且降低了用户本地计算、通信开销,其密文去噪效果几乎等同于明文域性能。
-
-
-
-
-