一种基于多领域知识驱动的图像美学质量评价方法

    公开(公告)号:CN111950655B

    公开(公告)日:2022-06-14

    申请号:CN202010861877.5

    申请日:2020-08-25

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于多领域知识驱动的图像美学质量评价方法,步骤S1:设计一个密集连接网络作为主干网络,提取图像的美学特征;S2:设计一个半监督学习算法,同时从有标签和无标签图像学习风格特征,提取图像的风格特征;S3:使用场景语义分类数据集和情感分类数据集训练场景语义分类模型和情感分类模型,提取图像的语义特征和情感特征;S4:使用梯度提升算法XGBoost,对提取到的特征进行特征筛选与融合,分别训练SVM分类模型和SVR回归模型来预测图像的美学质量。本发明能显著提高美学质量预测精度。

    一种基于多领域知识驱动的图像美学质量评价方法

    公开(公告)号:CN111950655A

    公开(公告)日:2020-11-17

    申请号:CN202010861877.5

    申请日:2020-08-25

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于多领域知识驱动的图像美学质量评价方法,步骤S1:设计一个密集连接网络作为主干网络,提取图像的美学特征;S2:设计一个半监督学习算法,同时从有标签和无标签图像学习风格特征,提取图像的风格特征;S3:使用场景语义分类数据集和情感分类数据集训练场景语义分类模型和情感分类模型,提取图像的语义特征和情感特征;S4:使用梯度提升算法XGBoost,对提取到的特征进行特征筛选与融合,分别训练SVM分类模型和SVR回归模型来预测图像的美学质量。本发明能显著提高美学质量预测精度。

Patent Agency Ranking