-
公开(公告)号:CN110737339A
公开(公告)日:2020-01-31
申请号:CN201911029362.2
申请日:2019-10-28
Applicant: 福州大学
Abstract: 本发明涉及一种基于深度学习的视觉—触觉交互模型构建方法。首先,基于设计的三种虚拟交互任务,获得不同任务下视觉注意力和触感控制之间的相关性,进行跨模态行为分析;其次,根据相关性,利用LSTM神经网络建立视觉—触觉交互预测模型,实现不同任务的交互模型,并进行性能对比和评价;最后,利用训练模型预测出的结果在虚拟控制任务中进行实施,判断任务中目标的完成情况。本发明方法较采用传统的基于机器学习的训练模型相比,基于深度学习的LSTM神经网络模型预测效果最好,并在非随机任务中任务完成度较高,优势明显。
-
公开(公告)号:CN110737339B
公开(公告)日:2021-11-02
申请号:CN201911029362.2
申请日:2019-10-28
Applicant: 福州大学
Abstract: 本发明涉及一种基于深度学习的视觉—触觉交互模型构建方法。首先,基于设计的三种虚拟交互任务,获得不同任务下视觉注意力和触感控制之间的相关性,进行跨模态行为分析;其次,根据相关性,利用LSTM神经网络建立视觉—触觉交互预测模型,实现不同任务的交互模型,并进行性能对比和评价;最后,利用训练模型预测出的结果在虚拟控制任务中进行实施,判断任务中目标的完成情况。本发明方法较采用传统的基于机器学习的训练模型相比,基于深度学习的LSTM神经网络模型预测效果最好,并在非随机任务中任务完成度较高,优势明显。
-