一种基于QoS模型自校正的云软件服务资源分配方法

    公开(公告)号:CN110138612B

    公开(公告)日:2020-09-01

    申请号:CN201910403638.2

    申请日:2019-05-15

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于QoS模型自校正的云软件服务资源分配方法,包括:步骤S1:进行在线自学习,得到QoS预测模型;步骤S2:收集某个工作负载下的运行时数据,通过自校正控制提高QoS预测模型在当前工作负载下的准确度;步骤S3:结合服务质量QoS和云资源成本Cost构建适应度函数,并使用改进的粒子群优化算法来搜索目标资源分配方案;步骤S4:将当前的资源分配情况与搜索到的目标资源分配方案进行比较,得到二者之间的差异,然后按一定的比例进行资源调整;步骤S5:重复步骤S2至步骤S4,直到当前的资源分配情况和目标资源分配方案相同时,完成资源调整。本发明能够在QoS预测模型不准确时实现资源的最优分配。

    一种基于QoS模型自校正的云软件服务资源分配方法

    公开(公告)号:CN110138612A

    公开(公告)日:2019-08-16

    申请号:CN201910403638.2

    申请日:2019-05-15

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于QoS模型自校正的云软件服务资源分配方法,包括:步骤S1:进行在线自学习,得到QoS预测模型;步骤S2:收集某个工作负载下的运行时数据,通过自校正控制提高QoS预测模型在当前工作负载下的准确度;步骤S3:结合服务质量QoS和云资源成本Cost构建适应度函数,并使用改进的粒子群优化算法来搜索目标资源分配方案;步骤S4:将当前的资源分配情况与搜索到的目标资源分配方案进行比较,得到二者之间的差异,然后按一定的比例进行资源调整;步骤S5:重复步骤S2至步骤S4,直到当前的资源分配情况和目标资源分配方案相同时,完成资源调整。本发明能够在QoS预测模型不准确时实现资源的最优分配。

Patent Agency Ranking