-
公开(公告)号:CN119071235A
公开(公告)日:2024-12-03
申请号:CN202411067400.4
申请日:2024-08-06
Applicant: 福州大学
IPC: H04L47/127 , H04L47/125
Abstract: 本发明涉及一种基于多变量时空反转Transformer的边缘负载预测方法,属于边缘负载预测领域。该方法通过序列反转将负载序列重新排序,从而保持输入序列多变量的独立性,避免维度混淆。同时,模型通过边缘节点的位置信息学习不同节点的空间特征,能够在不引入额外神经网络的情况下快速学习复杂的空间依赖。此外,该方法利用Transformer的自注意力机制捕捉多变量间的相关性,并利用前馈神经网络来学习时间序列的全局特征表示。此外,设计了一种新型的静态特征融合方法,允许预测模型选择当前最合适的静态特征进行融合。本发明能够合理地利用跨领域的静态特征,不受冗余静态特征的干扰,同时显著提高了模型在多变量维度下的训练速度。