-
公开(公告)号:CN107016110A
公开(公告)日:2017-08-04
申请号:CN201710246308.8
申请日:2017-04-15
Applicant: 福州大学
Abstract: 本发明提供一种结合Spark平台的OWLHorst规则分布式并行推理算法:根据Spark RDD的特点,结合TREAT算法的原理,首先对RDF本体数据进行构建模式三元组对应的alpha寄存器Om_RDD或Pt_RDD并广播以及规则标记模型;对每条规则的模式前件进行连接并生成对应的连接模式三元组集合Rulem_linkvar_RDD,从而加快推理过程中的匹配速度;在OWL Horst推理阶段,结合MapReduce实现TREAT算法中的alpha阶段,实现多条规则的分布式并行推理,然后对推理结果进行去重处理;通过alpha寄存器和规则标记模型能够过滤大量实例三元组,减少Map阶段键值对的输出,从而减少了无效的网络传输。
-
公开(公告)号:CN106980901B
公开(公告)日:2019-09-13
申请号:CN201710246309.2
申请日:2017-04-15
Applicant: 福州大学
IPC: G06N5/04
Abstract: 本发明提供流式RDF数据并行推理算法:构建规则的伪双向网络,若规则节点中存在类的连接变量则建立中间节点;定时获取Streaming数据流中的批量新数据以及前次推理产生的数据作为输入数据,对输入的数据进行归类或新建对应节点并存储到相应的Redis集群;对于输入的三元组数据结合伪双向网络判断对应的中间节点或者规则节点所监听的前件是否全部满足,进而对该规则进行推理,产生推理数据;通过实时地删除重复推理数据并本次推理产生的所有数据保存到Redis集群中作为下次推理的输入数据,从而完整高效地实现RDF数据OWL Horst规则的并行流式推理。
-
公开(公告)号:CN105912721A
公开(公告)日:2016-08-31
申请号:CN201610293055.5
申请日:2016-05-05
Applicant: 福州大学
CPC classification number: G06F16/24564 , G06F17/2785
Abstract: 本发明涉及一种RDF数据分布式语义并行推理方法,首先依据本体文件和RDFS/OWL规则,构建传递闭包关系矩阵(Transitive closure relation matrix,简称TRM)和连接变量信息,进而生成规则标记;然后根据连接变量的类型对RDFS/OWL规则进行分类,分别设计不同的推理方案,结合MapReduce计算框架并行地完成RDFS/OWL规则的推理。通过连接变量信息和规则标记对实例三元组进行过滤,能够减少大量无用的三元组数据在分布式系统中的传输损耗。通过构造传递闭包矩阵能够减少推理的迭代次数,提高推理的效率。最后,根据推理结果,实时地删除重复的三元组数据,以进一步提高后续迭代推理的效率。通过本发明在数据量增大的情况下能够高效且正确的实现RDFS/OWL规则的推理。
-
公开(公告)号:CN107016110B
公开(公告)日:2019-12-17
申请号:CN201710246308.8
申请日:2017-04-15
Applicant: 福州大学
IPC: G06F16/2455 , G06F17/27
Abstract: 本发明提供一种结合Spark平台的OWLHorst规则分布式并行推理算法:根据Spark RDD的特点,结合TREAT算法的原理,首先对RDF本体数据进行构建模式三元组对应的alpha寄存器Om_RDD或Pt_RDD并广播以及规则标记模型;对每条规则的模式前件进行连接并生成对应的连接模式三元组集合Rulem_linkvar_RDD,从而加快推理过程中的匹配速度;在OWL Horst推理阶段,结合MapReduce实现TREAT算法中的alpha阶段,实现多条规则的分布式并行推理,然后对推理结果进行去重处理;通过alpha寄存器和规则标记模型能够过滤大量实例三元组,减少Map阶段键值对的输出,从而减少了无效的网络传输。
-
公开(公告)号:CN105912721B
公开(公告)日:2019-06-07
申请号:CN201610293055.5
申请日:2016-05-05
Applicant: 福州大学
IPC: G06F16/2455 , G06F17/27
Abstract: 本发明涉及一种RDF数据分布式语义并行推理方法,首先依据本体文件和RDFS/OWL规则,构建传递闭包关系矩阵(Transitive closure relation matrix,简称TRM)和连接变量信息,进而生成规则标记;然后根据连接变量的类型对RDFS/OWL规则进行分类,分别设计不同的推理方案,结合MapReduce计算框架并行地完成RDFS/OWL规则的推理。通过连接变量信息和规则标记对实例三元组进行过滤,能够减少大量无用的三元组数据在分布式系统中的传输损耗。通过构造传递闭包矩阵能够减少推理的迭代次数,提高推理的效率。最后,根据推理结果,实时地删除重复的三元组数据,以进一步提高后续迭代推理的效率。通过本发明在数据量增大的情况下能够高效且正确的实现RDFS/OWL规则的推理。
-
公开(公告)号:CN106980901A
公开(公告)日:2017-07-25
申请号:CN201710246309.2
申请日:2017-04-15
Applicant: 福州大学
IPC: G06N5/04
Abstract: 本发明提供流式RDF数据并行推理算法:构建规则的伪双向网络,若规则节点中存在类的连接变量则建立中间节点;定时获取Streaming数据流中的批量新数据以及前次推理产生的数据作为输入数据,对输入的数据进行归类或新建对应节点并存储到相应的Redis集群;对于输入的三元组数据结合伪双向网络判断对应的中间节点或者规则节点所监听的前件是否全部满足,进而对该规则进行推理,产生推理数据;通过实时地删除重复推理数据并本次推理产生的所有数据保存到Redis集群中作为下次推理的输入数据,从而完整高效地实现RDF数据OWL Horst规则的并行流式推理。
-
-
-
-
-