-
公开(公告)号:CN111209392A
公开(公告)日:2020-05-29
申请号:CN201811386695.6
申请日:2018-11-20
Applicant: 百度在线网络技术(北京)有限公司
IPC: G06F16/35 , G06F16/33 , G06F40/289
Abstract: 本发明实施例提供一种污染企业的挖掘方法、装置及设备,根据待识别的舆情数据,获取至少一个候选句子,各所述候选句子为包含污染信息的句子,对各所述候选句子进行分词处理,得到各所述候选句子对应的词序列,将各所述词序列输入至企业识别模型中,获取各所述词序列对应的标签序列,根据各所述词序列对应的标签序列,确定污染企业的名称;通过利用企业识别模型对待识别的舆情数据进行识别,提高了污染企业的挖掘准确率;另外,还解决了现有技术中制定的规则模板扩展性弱的问题,并且规避了制定规则模板所需要耗费的人力和时间成本,提高了污染企业挖掘的效率。
-
公开(公告)号:CN111931799A
公开(公告)日:2020-11-13
申请号:CN201910395441.9
申请日:2019-05-13
Applicant: 百度在线网络技术(北京)有限公司
Abstract: 本发明提出一种图像识别方法及装置,其中方法包括:通过获取待识别的图像;将所述待识别的图像输入多个预设的深度残差网络,得到多个识别结果;识别结果为图像中存在目标对象的概率;深度残差网络对应的训练数据中,正样本与负样本的数量一致;根据所述多个识别结果,确定所述待识别的图像中是否存在所述目标对象。由此,相比采用单个模型进行识别,通过多个预设的深度残差网络分别对待识别的图像进行识别,弥补单个模型因欠采样可能出现的识别错误问题,识别准确度更高。此外,深度残差网络是更深层次的神经网络,相比于诸如CNN、深层的卷积神经网络AlexNet等深层网络和非深度学习的方法,能够学习到更多与图片标签相关的特征,分类性能提升明显。
-
公开(公告)号:CN111209392B
公开(公告)日:2023-06-20
申请号:CN201811386695.6
申请日:2018-11-20
Applicant: 百度在线网络技术(北京)有限公司
IPC: G06F16/35 , G06F16/33 , G06F40/289
Abstract: 本发明实施例提供一种污染企业的挖掘方法、装置及设备,根据待识别的舆情数据,获取至少一个候选句子,各所述候选句子为包含污染信息的句子,对各所述候选句子进行分词处理,得到各所述候选句子对应的词序列,将各所述词序列输入至企业识别模型中,获取各所述词序列对应的标签序列,根据各所述词序列对应的标签序列,确定污染企业的名称;通过利用企业识别模型对待识别的舆情数据进行识别,提高了污染企业的挖掘准确率;另外,还解决了现有技术中制定的规则模板扩展性弱的问题,并且规避了制定规则模板所需要耗费的人力和时间成本,提高了污染企业挖掘的效率。
-
公开(公告)号:CN111931799B
公开(公告)日:2023-06-20
申请号:CN201910395441.9
申请日:2019-05-13
Applicant: 百度在线网络技术(北京)有限公司
IPC: G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/048
Abstract: 本发明提出一种图像识别方法及装置,其中方法包括:通过获取待识别的图像;将所述待识别的图像输入多个预设的深度残差网络,得到多个识别结果;识别结果为图像中存在目标对象的概率;深度残差网络对应的训练数据中,正样本与负样本的数量一致;根据所述多个识别结果,确定所述待识别的图像中是否存在所述目标对象。由此,相比采用单个模型进行识别,通过多个预设的深度残差网络分别对待识别的图像进行识别,弥补单个模型因欠采样可能出现的识别错误问题,识别准确度更高。此外,深度残差网络是更深层次的神经网络,相比于诸如CNN、深层的卷积神经网络AlexNet等深层网络和非深度学习的方法,能够学习到更多与图片标签相关的特征,分类性能提升明显。
-
-
-