-
公开(公告)号:CN114578335B
公开(公告)日:2024-08-16
申请号:CN202210207643.8
申请日:2022-03-03
Applicant: 电子科技大学长三角研究院(衢州)
Abstract: 本发明属于无人机辅助轨迹定位的方法,具体涉及一种基于多智能体深度强化学习与最小二乘算法的定位方法。本发明建模一个无人机群与目标机器人相互通信的场景,利用有标签的无人机群和目标机器人的轨迹数据,以及二者之间的接收信号强度进行定位。首先使用最小二乘算法对目标位置进行定位,然后基于多智能体深度强化学习算法对无人机群进行自主定位,同时评估对目标位置的估计。训练过程中,使用深度神经网络处理高维状态输入,借助标签位置信息计算奖赏值,并考虑到多个智能体之间的异构性,进行了相关的仿真实验。通过训练可以得到一个自适应的网络模型,对处理高维异构数据也有一定的鲁棒性。因此,本发明是一种良好的定位替代技术。
-
公开(公告)号:CN117098067A
公开(公告)日:2023-11-21
申请号:CN202311051384.5
申请日:2023-08-21
Applicant: 电子科技大学长三角研究院(衢州)
IPC: H04W4/021 , H04W4/33 , G06F18/214 , G06F18/213 , G06F18/25 , G06F18/27 , G06N3/045 , G06N3/0464 , G06N3/08
Abstract: 本发明属于室内定位技术领域,具体涉及一种基于梯度融合的多模态深度学习室内定位方法。本发明的方法先提取不同模态数据的特征向量,在学习特征到现实坐标映射关系的同时,通过误差函数反过来影响特征向量的形成。由于各单模态的过拟合和泛化速度不同,多模态融合网络往往容易过度拟合。本发明中将单模态网络和多模态网络的梯度融合,增强了多模态网络的泛化性,改善了过拟合现象。因此,本发明提出的基于梯度融合的多模态深度学习定位方法是一种能够在复杂室内环境中实现准确定位的方法。
-
公开(公告)号:CN114727229A
公开(公告)日:2022-07-08
申请号:CN202210325226.3
申请日:2022-03-30
Applicant: 电子科技大学长三角研究院(衢州)
Abstract: 本发明属于室内定位技术领域,具体是涉及一种面向异构环境的基于深度强化学习的轨迹定位方法。本发明充分利用了环境中的观测和智能体自身的历史动态信息,以智能体的位置、环境中具有设备异构性的RSS向量和过去n个时刻的历史动作为状态,用于动作的选择。再基于近场条件选择强于RSS阈值对应的APs,以构成选定的APs集合,再根据集合的大小计算最终奖赏值。依据MDP中设计的各要素对智能体的位置进行估计,并以奖赏值为学习导向基于经验重放机制和目标网络进行深度强化学习算法的迭代训练。本发明基于路径损耗模型得到具有设备异构性的仿真RSS数据,实验结果证明本发明所提方法能够实现较高的定位精度,并对处理异构RSS数据也具有一定的鲁棒性。
-
公开(公告)号:CN114727229B
公开(公告)日:2025-01-17
申请号:CN202210325226.3
申请日:2022-03-30
Applicant: 电子科技大学长三角研究院(衢州)
Abstract: 本发明属于室内定位技术领域,具体是涉及一种面向异构环境的基于深度强化学习的轨迹定位方法。本发明充分利用了环境中的观测和智能体自身的历史动态信息,以智能体的位置、环境中具有设备异构性的RSS向量和过去n个时刻的历史动作为状态,用于动作的选择。再基于近场条件选择强于RSS阈值对应的APs,以构成选定的APs集合,再根据集合的大小计算最终奖赏值。依据MDP中设计的各要素对智能体的位置进行估计,并以奖赏值为学习导向基于经验重放机制和目标网络进行深度强化学习算法的迭代训练。本发明基于路径损耗模型得到具有设备异构性的仿真RSS数据,实验结果证明本发明所提方法能够实现较高的定位精度,并对处理异构RSS数据也具有一定的鲁棒性。
-
公开(公告)号:CN114581522A
公开(公告)日:2022-06-03
申请号:CN202210207656.5
申请日:2022-03-03
Applicant: 电子科技大学长三角研究院(衢州)
Abstract: 本发明属于单目视觉室内定位技术领域,具体涉及一种支撑点搜索的单目视觉定位方法。本发明主要针对普通单目摄像头与定位环境较为固定的场景。通过本发明方法对可视环境中的目标进行高精度二维定位。具体可分为离线与在线两个阶段。离线阶段,对单目摄像头进行标定,获取内参矩阵以及畸变系数。采集定位环境图像,构建参考面定位坐标系。然后选择像素坐标与世界坐标点对求解单应矩阵。在线阶段,首先用目标检测网络对可视区域内的定位目标进行检测,根据输出结果对背景图像进行更新。然后根据输出的目标类别在目标检测框内进一步搜索,估计目标在参考面的定位像素点。最后定位像素点经畸变矫正与投影映射,估计得到目标在真实环境下的二维坐标。
-
公开(公告)号:CN113657541B
公开(公告)日:2023-10-10
申请号:CN202110987414.8
申请日:2021-08-26
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06V10/40 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明属于目标识别技术领域,具体的说是涉及一种基于深度知识集成的领域自适应目标识别方法。本发明实现了特征级和决策级的深度知识集成。在特征级设计公有映射矩阵和特有映射矩阵实现知识集成,提升目标识别性能的鲁棒性;其中,公有映射矩阵充分挖掘了异构特征的公有知识,特有映射矩阵保留了不同特征的特有知识。在决策级设计特征权重量化不同特征的重要程度,同时利用目标域样本通过在线学习更新特征权重,克服不同领域的数据分布差异,实现领域自适应目标识别。因此本发明提出的基于深度知识集成的领域自适应目标识别方法是一种智能的领域自适应目标识别方法。
-
公开(公告)号:CN114578335A
公开(公告)日:2022-06-03
申请号:CN202210207643.8
申请日:2022-03-03
Applicant: 电子科技大学长三角研究院(衢州)
Abstract: 本发明属于无人机辅助轨迹定位的方法,具体涉及一种基于多智能体深度强化学习与最小二乘算法的定位方法。本发明建模一个无人机群与目标机器人相互通信的场景,利用有标签的无人机群和目标机器人的轨迹数据,以及二者之间的接收信号强度进行定位。首先使用最小二乘算法对目标位置进行定位,然后基于多智能体深度强化学习算法对无人机群进行自主定位,同时评估对目标位置的估计。训练过程中,使用深度神经网络处理高维状态输入,借助标签位置信息计算奖赏值,并考虑到多个智能体之间的异构性,进行了相关的仿真实验。通过训练可以得到一个自适应的网络模型,对处理高维异构数据也有一定的鲁棒性。因此,本发明是一种良好的定位替代技术。
-
公开(公告)号:CN113657541A
公开(公告)日:2021-11-16
申请号:CN202110987414.8
申请日:2021-08-26
Applicant: 电子科技大学长三角研究院(衢州)
Abstract: 本发明属于目标识别技术领域,具体的说是涉及一种基于深度知识集成的领域自适应目标识别方法。本发明实现了特征级和决策级的深度知识集成。在特征级设计公有映射矩阵和特有映射矩阵实现知识集成,提升目标识别性能的鲁棒性;其中,公有映射矩阵充分挖掘了异构特征的公有知识,特有映射矩阵保留了不同特征的特有知识。在决策级设计特征权重量化不同特征的重要程度,同时利用目标域样本通过在线学习更新特征权重,克服不同领域的数据分布差异,实现领域自适应目标识别。因此本发明提出的基于深度知识集成的领域自适应目标识别方法是一种智能的领域自适应目标识别方法。
-
-
-
-
-
-
-