-
公开(公告)号:CN117552030A
公开(公告)日:2024-02-13
申请号:CN202311487713.0
申请日:2023-11-08
Applicant: 电子科技大学长三角研究院(湖州)
IPC: C25B11/02 , C25B11/053 , C25B11/091 , C25B9/50 , C25B1/04 , C25B1/55 , B82Y30/00
Abstract: 本发明属于光电转化、可再生能源制氢、薄膜外延生长技术领域,尤其涉及一种GeSe基串联无偏压分解水制氢器件及其制备方法,包括GeSe光阳极和GeSe光阴极;所述GeSe光阳极包括析氧催化剂、缓冲层、GeSe层、导电衬底;所述GeSe光阴极包括析氢催化剂,保护层、缓冲层,GeSe层,导电衬底。通过调整电子‑空穴转移方向,将GeSe薄膜制备成能同时产氢和产氧的光电极;对以上两种电极进行串联后,其正、负光电压叠加就能实现全解水制氢。本发明具有光电转化效率高,便于制备等优点,在光电转化、利用可再生能源制氢领域有着极大的应用潜力。
-
公开(公告)号:CN115825036A
公开(公告)日:2023-03-21
申请号:CN202211524866.3
申请日:2022-11-29
Applicant: 电子科技大学长三角研究院(湖州)
Abstract: 本发明属于表面拉曼增强检测技术领域,公开了一种原位电化学SERS光谱选择性筛查分子的方法,制备金纳米三角锥形二聚体阵列的SERS基底;将PbS量子点的封端配体分子由油酸置换为3‑巯基丙酸分子;对SERS基底清洁后滴加PbS量子点溶液于SERS基底,待甲醇溶剂挥发后得到负载PbS量子点的SERS基底;将SERS基底和PbS量子点修饰的SERS基底分别作为工作电极,用于原位电化学SERS光谱检测。本发明利用PbS量子点介电效应二次增强SERS基底的检测灵敏度,利用原位电化学电势调控技术三次增强SERS基底,通过简单的电势调控筛选检测不同种类的痕量分子,检测灵敏度和准确性高、选择性强。
-
公开(公告)号:CN115791747A
公开(公告)日:2023-03-14
申请号:CN202211514649.6
申请日:2022-11-29
Applicant: 电子科技大学长三角研究院(湖州)
IPC: G01N21/65
Abstract: 本发明属于表面增强拉曼检测技术领域,公开了一种利用SERS基底和量子点快速识别痕量配体分子的方法,联用SERS基底和PbS量子点制备PbS量子点修饰的联用SERS基底;利用PbS量子点修饰的联用SERS基底,对量子点封端配体分子进行拉曼光谱的定性检测;PbS量子点的带隙激发形成共振拉曼,在SERS对光谱信号的增强基础上,二次加强拉曼光谱信号,用于识别PbS量子点上的痕量封端配体分子。本发明采用极少量的PbS量子点对SERS基底产生二次增强,弥补了封端配体分子数量少使光谱信号过低的问题;通过联用SERS基底和PbS量子点,建立灵敏度高、选择性强、准确性高、检测速度快的方法。
-
公开(公告)号:CN115709092A
公开(公告)日:2023-02-24
申请号:CN202211504183.1
申请日:2022-11-29
Applicant: 电子科技大学长三角研究院(湖州)
Abstract: 本发明公开了一种新型六棱柱状光催化剂的制备方法,该光催化剂是以超薄g‑C3N4纳米片为原料,以乙酸乙酯‑四氯化碳共沸混合物为溶剂,以亚乙基二油酸酰胺为表面活性剂,采用微波辅助的重结晶法制备。制备的g‑C3N4光催化剂的微观结构为六棱柱状,直径约为1~3μm,并且其表面含有丰富的羟基官能团。另外,本发明方法制备的六棱柱状光催化剂具有较高的结晶度,利于电子在层间迁移,使得更多的电子和空穴可以转移到CCN表面,从而增加载流子的利用率。本发明结果表明,在空气环境下,CCN可以实现高效光催化固氮生成硝酸根,其速率可以达到34.56mg h‑1g‑1,远高于纯g‑C3N4纳米片的产生硝酸根的速率。
-
公开(公告)号:CN115896812A
公开(公告)日:2023-04-04
申请号:CN202211509457.6
申请日:2022-11-29
Applicant: 电子科技大学长三角研究院(湖州)
IPC: C25B1/04 , C25B1/55 , C25B11/02 , C25B11/04 , C25B11/087
Abstract: 本发明涉及一种基于空心砖硒化亚锗薄膜的光解水产氧光阳极及其电极系统,该GeSe光阳极包括透明导电基底和依次设置于透明导电基底上的CdS电子传输层、空心砖结构的GeSe吸光层和析氧助催化剂层,该电极系统光阳极中GeSe作为吸光层具有窄禁带宽度(1.1eV)、高光吸收能力等特点。同时,GeSe吸光层结合CdS电子传输层形成陷光结构,析氧助催化剂设置于GeSe吸光层上,太阳光自透明导电基底侧入射,该高光吸收能力的光阳极电极系统相较于传统的宽禁带n型半导体制成的光阳极电极系统具有更高的光转氢效率。且本发明的材料具有低毒、低成本、易扩展等特点,利于该光阳极电极系统的大规模实际制氢应用。
-
公开(公告)号:CN115739157A
公开(公告)日:2023-03-07
申请号:CN202211504168.7
申请日:2022-11-29
Applicant: 电子科技大学长三角研究院(湖州)
Abstract: 本发明公开了一种3D分级结构氮化碳光催化剂的制备方法,该结构的催化剂以下简称为SCN,该光催化材料是以尿素直接缩聚生成的体相g‑C3N4为前驱体,以硝酸氨基胍为造孔剂,采用冷冻干燥结合热处理策略制备而成的。其结构由海绵状多级3D多孔石墨相氮化碳组成,主要制备方法如下:1)前驱体的制备;2)制备多孔结构;3)海绵状多孔g‑C3N4光催化剂的制备。该方法解决了传统石墨相氮化碳合成过程中缩聚不完全,导致其内部微观结构不可控,载流子复合效率高,且产生的载流子数量少,从而所得的光催化效率低的问题,以上方法制备的3D分级结构氮化碳光催化剂纳米材料相比于体相g‑C3N4显著提升了其光催化反应的效率。
-
公开(公告)号:CN115679371A
公开(公告)日:2023-02-03
申请号:CN202211465474.4
申请日:2022-11-22
Applicant: 电子科技大学长三角研究院(湖州)
IPC: C25B11/091 , C25B11/02 , C25B1/55 , C25B1/04
Abstract: 本发明涉及一种双阴极并联光驱动分解水制氢电极系统,包括,容纳有酸性电解液的腔室,设置于腔室侧壁上的第一阴极,其包括第一导电衬底、宽带隙半导体薄膜和析氢催化剂;设置于腔室侧壁上的第二阴极,其包括第二导电衬底、窄带隙半导体薄膜、n型半导体层和析氢催化剂;析氧电极设置于酸性电解液中;具有正极和负极的热电器件,具有热端和冷端,热端与第二阴极邻接设置;第一导电衬底和第二导电衬底连接至负极,析氧电极连接至正极。该电极系统完全依赖太阳能驱动分解水制氢,同时充分利用了太阳光以及热电器件的输出功率,极大地增加了单位时间内的制氢量,具有良好的发展前景和经济效益。
-
公开(公告)号:CN115837283B
公开(公告)日:2024-07-19
申请号:CN202211465475.9
申请日:2022-11-22
Applicant: 电子科技大学长三角研究院(湖州)
Abstract: 本发明涉及一种氧化铈/石墨相氮化碳纳米复合光催化剂及其制备方法,其包括,选用极性不同的第一极性溶剂和第二极性溶剂按照一定的比例混合均匀获得混合极性溶剂,在超声条件下,将亚乙基二油酸酰胺表面活性剂分散至混合极性溶剂中,随后加入g‑C3N4纳米片,接着加入乙二胺调节pH值至8~10,形成混合极性溶液;将一定量的乙酰丙酮铈加入混合极性溶液中,在低温条件下,超声反应获得包含有复合光催化剂的混合溶液;将混合溶液提纯后在真空冷冻条件下干燥获得该复合光催化剂。该制备方法温和简单易操作,制备获得的复合光催化剂具有光生电子和空穴对分离效率高和传输性能好的特点。
-
公开(公告)号:CN117535718A
公开(公告)日:2024-02-09
申请号:CN202311364113.5
申请日:2023-10-18
Applicant: 电子科技大学长三角研究院(湖州)
IPC: C25B11/091 , C25B11/061 , C25B1/04 , C25B1/55
Abstract: 本发明本发明涉及光电化学裂解水制氢领域公开了一种用于光电化学裂解水制氢的银铋硫(AgBiS2)基复合光阴极及其制备方法,该复合光阴极结构包括位于底部的镀钼导电基底,位于导电基底上方的AgBiS2吸光层,位于吸光层上方的CdS缓冲层,位于缓冲层上方的TiO2保护层,位,于保护层上方的Pt析氢助催化剂层。其制备方法包含以下步骤:利用喷雾热解法在镀钼基底上喷涂一层AgBiS2层;再利用化学水浴法在AgBiS2层上沉积一层CdS层;然后利用原子层沉积法在CdS层上沉积一层TiO2层;最后利用光辅助电沉积法在TiO2层上沉积一层Pt纳米颗粒。本发明公开的AgBiS2基光阴极可在一定偏压下实现高效且稳定的光电化学裂解水制氢,并且其制备方法简单且成本低。
-
公开(公告)号:CN116020447A
公开(公告)日:2023-04-28
申请号:CN202211518615.4
申请日:2022-11-30
Applicant: 电子科技大学长三角研究院(湖州)
Abstract: 本发明涉及一种具有载流子分离结构的氧化钛基光催化除甲醛光触媒及其制备方法,其光触媒为纳米复合物,包括二氧化钛、碳基材料和催化剂;碳基材料负载于二氧化钛的表面,两者之间具有双重电子转移通道;催化剂负载于二氧化钛的表面,碳基材料与二氧化钛的质量比为0.1%~5%,催化剂占纳米复合物的质量百分比为0.001%‑0.01%。该光触媒有效地减少了电子空穴对的复合几率,同时负载的催化剂提供了更多的反应活性位点,成倍地提升甲醛处理效率和速率;本发明所制备的光催化除甲醛光触媒,具有高活性、无毒、低成本的特点,具备良好的产业化应用前景。
-
-
-
-
-
-
-
-
-