-
公开(公告)号:CN115830071A
公开(公告)日:2023-03-21
申请号:CN202211544341.6
申请日:2022-12-04
Applicant: 电子科技大学长三角研究院(湖州)
IPC: G06T7/246 , G06T7/73 , G06V10/764 , G06V10/40 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于自适应权值模板更新的空间‑语义感知注意跟踪方法,属于目标跟踪技术领域,用于解决传统基于分类‑回归的跟踪算法难以处理目标持续外观变化的问题。本发明首先建立了一个空间‑语义感知注意模型,利用具有损失函数的单卷积注意网络在线识别目标特征图上的不同区域和通道对目标表示的重要性,然后通过在空间和通道维度上增加相应权重来强化特征图上的特定区域和语义信息;其次,为了更好地适应目标外观变化,我们提出了一种新的模板更新策略来自适应调整跟踪结果对新模板的贡献权重,进一步增强了模板的可靠性。本发明通过空间‑语义感知注意模型突出目标特征,同时抑制背景信息,从而获得更具判别力的目标外观模型,提升跟踪结果的鲁棒性。