-
公开(公告)号:CN118690320B
公开(公告)日:2024-12-06
申请号:CN202410775959.6
申请日:2024-06-17
Applicant: 电子科技大学
IPC: G06F18/25 , G06F18/10 , G06F18/2131 , G06N3/045 , G06F18/24 , G06N3/0464
Abstract: 本发明公开了一种基于多模态信息融合的雷达辐射源个体识别方法,所述方法包括:步骤1、数据获取;步骤2、采用短时傅里叶变换,利用中频数据Q进行时频转换;步骤3、对全脉冲数据进行归一化处理;步骤4、构建两分支雷达辐射源特征融合网络,由中频分支和全脉冲分支组成;步骤5、构建MLP神经网络分类器,得到辐射源个体的识别结果;步骤6、使用步骤2和步骤3所处理后的数据,训练步骤4搭建的融合网络和步骤5搭建的MLP神经网络分类器,并将训练完成的网络应用于雷达辐射源个体识别。本申请融合了中频与全脉冲数据,利用针对性设计的神经网络,通过自注意力机制,多角度挖掘辐射源个体的微粒特征,实现对辐射源个体的有效识别。
-
公开(公告)号:CN118690320A
公开(公告)日:2024-09-24
申请号:CN202410775959.6
申请日:2024-06-17
Applicant: 电子科技大学
IPC: G06F18/25 , G06F18/10 , G06F18/2131 , G06N3/045 , G06F18/24 , G06N3/0464
Abstract: 本发明公开了一种基于多模态信息融合的雷达辐射源个体识别方法,所述方法包括:步骤1、数据获取;步骤2、采用短时傅里叶变换,利用中频数据Q进行时频转换;步骤3、对全脉冲数据进行归一化处理;步骤4、构建两分支雷达辐射源特征融合网络,由中频分支和全脉冲分支组成;步骤5、构建MLP神经网络分类器,得到辐射源个体的识别结果;步骤6、使用步骤2和步骤3所处理后的数据,训练步骤4搭建的融合网络和步骤5搭建的MLP神经网络分类器,并将训练完成的网络应用于雷达辐射源个体识别。本申请融合了中频与全脉冲数据,利用针对性设计的神经网络,通过自注意力机制,多角度挖掘辐射源个体的微粒特征,实现对辐射源个体的有效识别。
-