在联邦学习中移除非规则用户的隐私保护方法

    公开(公告)号:CN114239070B

    公开(公告)日:2023-07-21

    申请号:CN202111588461.1

    申请日:2021-12-23

    Abstract: 本发明公开了一种在联邦学习中移除非规则用户的隐私保护方法,属于信息安全技术领域。本发明包括不规则用户删除算法TrustIU和保护用户的敏感信息的加权聚合协议两个部分;TrustIU利用余弦相似度进行聚合,减少了不规则用户的负面影响,从而确保全局模型主要来源于高质量的数据;在TrustIU的基础上,本发明采用安全加权的定制密码协议聚合;此聚合方案通过使用双隐蔽隐私保护技术,确保了服务器只学习用户的梯度信息,而不会泄露其他隐私。本发明在具有良好的训练精度和效率的同时,对整个培训过程中对用户退出具有鲁棒性。

    一种保护用户数据隐私的抗拜占庭攻击的联邦学习方法

    公开(公告)号:CN114239862A

    公开(公告)日:2022-03-25

    申请号:CN202111589802.7

    申请日:2021-12-23

    Abstract: 本发明提供一种保护用户数据隐私的抗拜占庭攻击的联邦学习方法,将服务器端分为两部分,计算服务器和服务提供服务器,由这两个服务器共同完成安全计算,各自得到有效性检测结果、反映服务器梯度方向与本地梯度方向相似性的余弦相似度结果,此过程中两中服务器无法通过各自的数据推算参与方的数据集内容,保护了用户数据隐私。同时,服务器端得到的通过有效性检测结果以及余弦相似度结果得到的聚合可信分数能有效完成接收数据筛选,剔除无效数据后更新全局模型。发明在进行联邦学习时技能保护用户数据隐私有能够抵御强拜占庭攻击,具有较高的扩展性和性能表现,能够满足不同规模的数据场景。

    在联邦学习中移除非规则用户的隐私保护方法

    公开(公告)号:CN114239070A

    公开(公告)日:2022-03-25

    申请号:CN202111588461.1

    申请日:2021-12-23

    Abstract: 本发明公开了一种在联邦学习中移除非规则用户的隐私保护方法,属于信息安全技术领域。本发明包括不规则用户删除算法TrustIU和保护用户的敏感信息的加权聚合协议两个部分;TrustIU利用余弦相似度进行聚合,减少了不规则用户的负面影响,从而确保全局模型主要来源于高质量的数据;在TrustIU的基础上,本发明采用安全加权的定制密码协议聚合;此聚合方案通过使用双隐蔽隐私保护技术,确保了服务器只学习用户的梯度信息,而不会泄露其他隐私。本发明在具有良好的训练精度和效率的同时,对整个培训过程中对用户退出具有鲁棒性。

Patent Agency Ranking