一种基于张量多属性特征迁移的分类方法

    公开(公告)号:CN115019084B

    公开(公告)日:2024-05-28

    申请号:CN202210529783.7

    申请日:2022-05-16

    Abstract: 本发明涉及迁移学习和张量领域,具体为一种基于张量多属性特征迁移的分类方法;该方法结合张量体系和基于特征的迁移方法实现了对无标签数据集的有效分类。分类过程中,首先通过张量建模的方式建立有标签源域和无标签目标域的张量模型,然后使用动态分布自适应方法对源域样本张量和目标域样本张量每一个特征阶迭代进行了特征对齐,实现了源域样本和目标域样本多属性间统计特征的迁移。相较于传统的特征迁移方法提高了对无标签目标域数据样本的分类准确率。

    一种基于张量多属性特征迁移的分类方法

    公开(公告)号:CN115019084A

    公开(公告)日:2022-09-06

    申请号:CN202210529783.7

    申请日:2022-05-16

    Abstract: 本发明涉及迁移学习和张量领域,具体为一种基于张量多属性特征迁移的分类方法;该方法结合张量体系和基于特征的迁移方法实现了对无标签数据集的有效分类。分类过程中,首先通过张量建模的方式建立有标签源域和无标签目标域的张量模型,然后使用动态分布自适应方法对源域样本张量和目标域样本张量每一个特征阶迭代进行了特征对齐,实现了源域样本和目标域样本多属性间统计特征的迁移。相较于传统的特征迁移方法提高了对无标签目标域数据样本的分类准确率。

Patent Agency Ranking