基于对比学习的社交平台谣言检测模型构建方法及检测方法

    公开(公告)号:CN113705099B

    公开(公告)日:2023-06-13

    申请号:CN202111008424.9

    申请日:2021-08-31

    Abstract: 本发明公开了一种基于对比学习的社交平台谣言检测模型构建方法及预测方法,利用事件增强对原始数据集进行扩充和增强,再将增强后的数据输入对比学习和图神经网络进行自监督图表示学习,得到无标签训练下的模型。然后用部分或全部有标签的数据对网络模型进行训练,利用有监督的信息对模型进行微调,得到代表源博文信息的嵌入表示,最后输入神经网络分类器,获得谣言的分类结果。本发明基于图神经网络的对比学习方法和事件增强策略,缓解了现实情况下谣言数据集稀缺、制作数据集标签困难的现状。进一步,本发明将学习到的谣言嵌入表示输入神经网络分类器,从而达到对在线网络平台谣言检测的目的。

    基于对比学习的社交平台谣言检测模型构建方法及检测方法

    公开(公告)号:CN113705099A

    公开(公告)日:2021-11-26

    申请号:CN202111008424.9

    申请日:2021-08-31

    Abstract: 本发明公开了一种基于对比学习的社交平台谣言检测模型构建方法及预测方法,利用事件增强对原始数据集进行扩充和增强,再将增强后的数据输入对比学习和图神经网络进行自监督图表示学习,得到无标签训练下的模型。然后用部分或全部有标签的数据对网络模型进行训练,利用有监督的信息对模型进行微调,得到代表源博文信息的嵌入表示,最后输入神经网络分类器,获得谣言的分类结果。本发明基于图神经网络的对比学习方法和事件增强策略,缓解了现实情况下谣言数据集稀缺、制作数据集标签困难的现状。进一步,本发明将学习到的谣言嵌入表示输入神经网络分类器,从而达到对在线网络平台谣言检测的目的。

Patent Agency Ranking