-
公开(公告)号:CN117350352B
公开(公告)日:2024-02-23
申请号:CN202311657308.9
申请日:2023-12-06
Applicant: 烟台大学
IPC: G06N3/08 , G06N3/0464
Abstract: 本发明涉及图像数据处理技术领域,具体为结构脑网络到功能连通性网络的学习方法、系统和设备,将T1加权成像的结构脑网络中影像组学特征和脑区间连通性拓扑结构进行不同空间不同通道维度的信息聚合,可有效捕捉到高维度的脑区图像特征,得到初始连通性网络;同时,在不扫描标准静息态功能磁共振成像的情况下,获得标准功能连通性网络;并通过控制初始连通性网络与标准功能连通性网络的特征差异,以及初始连通性网络经多空间尺度特征处理后得到的优化初始连通性网络,与结构脑网络的特征差异,让初始连通性网络中的影像结构表达与标准功
-
公开(公告)号:CN117350352A
公开(公告)日:2024-01-05
申请号:CN202311657308.9
申请日:2023-12-06
Applicant: 烟台大学
IPC: G06N3/08 , G06N3/0464
Abstract: 本发明涉及图像数据处理技术领域,具体为结构脑网络到功能连通性网络的学习方法、系统和设备,将T1加权成像的结构脑网络中影像组学特征和脑区间连通性拓扑结构进行不同空间不同通道维度的信息聚合,可有效捕捉到高维度的脑区图像特征,得到初始连通性网络;同时,在不扫描标准静息态功能磁共振成像的情况下,获得标准功能连通性网络;并通过控制初始连通性网络与标准功能连通性网络的特征差异,以及初始连通性网络经多空间尺度特征处理后得到的优化初始连通性网络,与结构脑网络的特征差异,让初始连通性网络中的影像结构表达与标准功能连通性网络更接近,提升T1加权成像的结构脑网络的关键信息表达性能。
-