一种协调特征一致性和特异性的跨域目标检测方法及系统

    公开(公告)号:CN114912516B

    公开(公告)日:2023-06-06

    申请号:CN202210440038.5

    申请日:2022-04-25

    Abstract: 本发明公开了一种协调特征一致性和特异性的跨域目标检测方法及系统,包括:步骤1,构建源域数据集和目标域数据集,搭建基准跨域目标检测模型;步骤2,通过特征特异性记忆读写模块不断更新记忆单元中的记忆元素,指导基准跨域目标检测模型对特征特异性进行学习,再通过特征一致性加权对齐模块使用源域和目标域记忆元素来引导相同类别的记忆元素进行混淆、以及根据待检测目标类别出现的比例对每个类别级域判别器的损失函数进行加权,在语义特异性基础上进一步引导特征对跨域一致性的学习,得到跨域目标检测模型;步骤3,以协调特征一致性和特异性的跨域目标检测模型的损失函数为优化目标对该模型进行训练,并将训练后的模型应用于目标域。

    基于渐进式信息解耦的跨域模型训练方法

    公开(公告)号:CN116778277A

    公开(公告)日:2023-09-19

    申请号:CN202310899182.X

    申请日:2023-07-20

    Abstract: 本发明涉及目标检测技术领域,具体公开了一种基于渐进式信息解耦的跨域模型训练方法,包括:构建源域数据集和目标域数据集;将源域数据集和目标域数据集均输入至视觉目标检测器进行训练,挖掘与配准组件能够分别对源域数据集和目标域数据集提取到的浅层特征进行相似性特征挖掘与配准;语义校正组件能够分别对源域数据集和目标数据集提取到的中层特征进行上下文感知的语义校正;聚合分散组件能够根据源域数据集和目标域数据集的边界框、置信度和分类类别实现不同类别前景目标的聚合和分散。本发明提供的基于渐进式信息解耦的跨域模型训练方法能够有效解决跨域目标检测中前景目标特征和背景环境特征的耦合。

    一种协调特征一致性和特异性的跨域目标检测方法及系统

    公开(公告)号:CN114912516A

    公开(公告)日:2022-08-16

    申请号:CN202210440038.5

    申请日:2022-04-25

    Abstract: 本发明公开了一种协调特征一致性和特异性的跨域目标检测方法及系统,包括:步骤1,构建源域数据集和目标域数据集,搭建基准跨域目标检测模型;步骤2,通过特征特异性记忆读写模块不断更新记忆单元中的记忆元素,指导基准跨域目标检测模型对特征特异性进行学习,再通过特征一致性加权对齐模块使用源域和目标域记忆元素来引导相同类别的记忆元素进行混淆、以及根据待检测目标类别出现的比例对每个类别级域判别器的损失函数进行加权,在语义特异性基础上进一步引导特征对跨域一致性的学习,得到跨域目标检测模型;步骤3,以协调特征一致性和特异性的跨域目标检测模型的损失函数为优化目标对该模型进行训练,并将训练后的模型应用于目标域。

Patent Agency Ranking