-
公开(公告)号:CN102521561B
公开(公告)日:2014-10-29
申请号:CN201110363873.5
申请日:2011-11-16
Applicant: 湖南大学
IPC: G06K9/00
Abstract: 本发明公开了一种基于多尺度韦伯局部特征和分层决策融合的人脸识别方法。它包括以下步骤:将人脸图像尺寸归一化,再用高斯滤波器进行平滑处理;从预处理后的人脸图像中找出均匀分布的像素点;以像素点为中心分割出一组不同尺度大小的子图像,提取每个子图像的韦伯局部特征向量;求取测试图像中每个子图像的特征向量与样本子图像的特征向量之间的卡方距离,根据卡方距离求取测试图像中每个子图像的隶属度;根据隶属度最大的原则,选择其中隶属度最大对应的识别结果作为该组的识别结果;将每一组得到识别结果通过投票的方式进行决策融合得到整个待测人脸图像的识别结果。本发明采用韦伯局部特征和分层决策融合进行人脸识别,大大提高了识别准确率。
-
公开(公告)号:CN102521561A
公开(公告)日:2012-06-27
申请号:CN201110363873.5
申请日:2011-11-16
Applicant: 湖南大学
IPC: G06K9/00
Abstract: 本发明公开了一种基于多尺度韦伯局部特征和分层决策融合的人脸识别方法。它包括以下步骤:将人脸图像尺寸归一化,再用高斯滤波器进行平滑处理;从预处理后的人脸图像中找出均匀分布的像素点;以像素点为中心分割出一组不同尺度大小的子图像,提取每个子图像的韦伯局部特征向量;求取测试图像中每个子图像的特征向量与样本子图像的特征向量之间的卡方距离,根据卡方距离求取测试图像中每个子图像的隶属度;根据隶属度最大的原则,选择其中隶属度最大对应的识别结果作为该组的识别结果;将每一组得到识别结果通过投票的方式进行决策融合得到整个待测人脸图像的识别结果。本发明采用韦伯局部特征和分层决策融合进行人脸识别,大大提高了识别准确率。
-
公开(公告)号:CN102722699A
公开(公告)日:2012-10-10
申请号:CN201210159963.7
申请日:2012-05-22
Applicant: 湖南大学
Abstract: 本发明公开了一种基于多尺度韦伯局部特征和核组稀疏表示的人脸识别方法。它包括以下步骤:首先,将人脸图像尺寸归一化,利用高斯滤波器平滑图像;通过不同半径的滤波窗口提取图像多尺度的韦伯局部特征的差分激励成分,采用Sobel算子提取其方向信息;根据多尺度差分激励和方向信息提取人脸图像的多尺度的韦伯局部特征,并利用直方图交叉核将其映射到核空间;然后,利用训练样本得到的核矩阵作为稀疏字典,计算由测试样本得到的核向量的组稀疏表示系数;最后,根据组稀疏系数重构测试样本的多尺度韦伯局部特征向量,利用最小重构误差识别测试样本。本发明融合多尺度韦伯局部特征和核组稀疏表示算法进行人脸识别,大大提高了识别准确率。
-
-