一种基于混合多尺度知识蒸馏的轻量化缺陷检测方法

    公开(公告)号:CN118154607B

    公开(公告)日:2024-08-09

    申请号:CN202410579980.9

    申请日:2024-05-11

    Applicant: 湖南大学

    Abstract: 本发明公开了一种基于混合多尺度知识蒸馏的轻量化缺陷检测方法,构建数据集;构建教师网络模型和轻量化学生网络模型;使用数据集对教师网络模型进行训练,并将训练好的教师网络模型权重文件保存;载入保存的教师网络模型权重文件到教师网络模型,将数据集中的缺陷图像输入至教师网络模型和学生网络模型中分别得到第一多尺度特征和第二多尺度特征,再分别输入至级联式知识混合模块得到最终的深度融合的第一多尺度特征和第二多尺度特征,进而计算混合多尺度知识损失,结合学生网络模型的预测损失利用反向传播算法来网络参数进行更新,得到训练好的轻量化学生网络模型完成智能制造产品的缺陷检测。提升对不同尺度缺陷的认知能力和识别性能。

    一种基于混合多尺度知识蒸馏的轻量化缺陷检测方法

    公开(公告)号:CN118154607A

    公开(公告)日:2024-06-07

    申请号:CN202410579980.9

    申请日:2024-05-11

    Applicant: 湖南大学

    Abstract: 本发明公开了一种基于混合多尺度知识蒸馏的轻量化缺陷检测方法,构建数据集;构建教师网络模型和轻量化学生网络模型;使用数据集对教师网络模型进行训练,并将训练好的教师网络模型权重文件保存;载入保存的教师网络模型权重文件到教师网络模型,将数据集中的缺陷图像输入至教师网络模型和学生网络模型中分别得到第一多尺度特征和第二多尺度特征,再分别输入至级联式知识混合模块得到最终的深度融合的第一多尺度特征和第二多尺度特征,进而计算混合多尺度知识损失,结合学生网络模型的预测损失利用反向传播算法来网络参数进行更新,得到训练好的轻量化学生网络模型完成智能制造产品的缺陷检测。提升对不同尺度缺陷的认知能力和识别性能。

Patent Agency Ranking