-
公开(公告)号:CN117152644A
公开(公告)日:2023-12-01
申请号:CN202311239554.2
申请日:2023-09-25
Applicant: 湖南大学 , 江西省通讯终端产业技术研究院有限公司
IPC: G06V20/17 , G06V10/25 , G06V10/774 , G06V10/764 , G06V10/77 , G06V10/80 , G06V10/82
Abstract: 本发明涉及无人系统目标检测技术领域,具体为一种无人机航拍照片的目标检测方法,包括:1、构建训练集;2、构建目标检测模型;3、选一图像输入到骨干网络中,得到四类不同尺度的骨干网络特征图;4、将3的输出结果进行特征融合,得到四类融合特征图;5、将第四类融合特征图输入到CVAN模块中,最终得到第四类输出特征图;6、将5的输出结果输入到目标检测头中,计算得到目标的分类信息等信息;重复3至5,直至迭代至设定次数,选取最好的一组权重结果,得到训练后的目标检测模型。本发明引入了变换器,无人机图像中包含许多密集的微小物体,引入变换器可以有效增强每个微小物体的语义可分辨性,有效减少漏检和误检。
-
公开(公告)号:CN116912302A
公开(公告)日:2023-10-20
申请号:CN202311170392.1
申请日:2023-09-12
Applicant: 湖南大学
Abstract: 本发明公开了一种基于深度图像配准网络的高精度成像方法及系统,搭建高精度成像系统,包括三轴运动平台、成像模块和载具,载具和成像模块分别固设于三轴运动平台的Y轴和Z轴上,目标产品通过载具固定;通过调整X、Y和Z轴确定成像模块的拍摄路径并对目标产品进行局部拍摄,得到若干张局部图像;采用深度图像配准网络对若干张局部图像中所有两两相邻的图像进行处理,得到每组相邻图像的变换矩阵;将若干张局部图像通过变换矩阵进行转换,并将转换后的局部图像依次填入到预先设计的空白大图中,并将空白大图中相邻图像之间进行融合,得到目标产品的高精度完整图像。该方法可节省相邻的两个局部图像的特征配准时间且系统的成本低。
-
公开(公告)号:CN116912302B
公开(公告)日:2023-12-01
申请号:CN202311170392.1
申请日:2023-09-12
Applicant: 湖南大学
Abstract: 本发明公开了一种基于深度图像配准网络的高精度成像方法及系统,搭建高精度成像系统,包括三轴运动平台、成像模块和载具,载具和成像模块分别固设于三轴运动平台的Y轴和Z轴上,目标产品通过载具固定;通过调整X、Y和Z轴确定成像模块的拍摄路径并对目标产品进行局部拍摄,得到若干张局部图像;采用深度图像配准网络对若干张局部图像中所有两两相邻的图像进行处理,得到每组相邻图像的变换矩阵;将若干张局部图像通过变换矩阵进行转换,并将转换后的局部图像依次填入到预先设计的空白大图中,并将空白大图中相邻图像之间进行融合,
-
-