-
公开(公告)号:CN114070601B
公开(公告)日:2022-11-11
申请号:CN202111332817.5
申请日:2021-11-11
Applicant: 湖南大学
Abstract: 本发明公开了一种基于EMDR‑WE算法的LDoS攻击检测方法,属于计算机网络安全领域。其中所述的方法包括:鉴于LDoS攻击下TCP流量序列呈现出高复杂度的特点,组合近似熵、样本熵、模糊熵、排列熵四种特征熵量化攻击窗口和正常窗口的TCP流量序列复杂度。首先构造一种经验模态分解并重构TCP流量序列的预处理模型,通过该模型过滤TCP流量序列的噪声成分并得到TCP流量的滑动窗口序列,提取各窗口的四种特征熵。接着利用熵权法赋予信息贡献度大的特征熵更高的权重,得到各TCP流量窗口的复杂度的综合评分。与逻辑回归训练得出的阈值比较,综合评分高于阈值的窗口被判定为存在LDoS攻击。本发明提出的基于经验模态分解、重构和熵权法的LDoS攻击检测方法能准确地检测LDoS攻击且性能稳定。
-
公开(公告)号:CN114070601A
公开(公告)日:2022-02-18
申请号:CN202111332817.5
申请日:2021-11-11
Applicant: 湖南大学
Abstract: 本发明公开了一种基于EMDR‑WE算法的LDoS攻击检测方法,属于计算机网络安全领域。其中所述的方法包括:鉴于LDoS攻击下TCP流量序列呈现出高复杂度的特点,组合近似熵、样本熵、模糊熵、排列熵四种特征熵量化攻击窗口和正常窗口的TCP流量序列复杂度。首先构造一种经验模态分解并重构TCP流量序列的预处理模型,通过该模型过滤TCP流量序列的噪声成分并得到TCP流量的滑动窗口序列,提取各窗口的四种特征熵。接着利用熵权法赋予信息贡献度大的特征熵更高的权重,得到各TCP流量窗口的复杂度的综合评分。与逻辑回归训练得出的阈值比较,综合评分高于阈值的窗口被判定为存在LDoS攻击。本发明提出的基于经验模态分解、重构和熵权法的LDoS攻击检测方法能准确地检测LDoS攻击且性能稳定。
-