基于深度强化学习的分布式计算卸载方法及装置

    公开(公告)号:CN114449584B

    公开(公告)日:2024-06-28

    申请号:CN202210120047.6

    申请日:2022-02-09

    Applicant: 湖南大学

    Abstract: 本申请涉及一种基于深度强化学习的分布式计算卸载方法及装置。该方法:设置计算卸载框架,根据计算卸载框架建立通信模型和计算模型,通信模型用于计算终端设备的信号噪声干扰比,计算模型用于对终端设备进行本地计算和边缘计算,基于计算卸载框架、通信模型和计算模型,将计算卸载问题建模成马尔可夫决策过程,利用双Critic网络的深度确定性策略梯度算法对马尔可夫决策过程进行优化迭代求解,得到卸载决策。由于利用双Critic网络的深度确定性策略梯度算法来进行优化迭代求解,双Critic网络分别进行拟合,降低单个Critic网络进行拟合的复杂性,提高Critic网络的收敛速度,从而大大提高模型整体的收敛速度。

    基于深度强化学习的分布式计算卸载方法及装置

    公开(公告)号:CN114449584A

    公开(公告)日:2022-05-06

    申请号:CN202210120047.6

    申请日:2022-02-09

    Applicant: 湖南大学

    Abstract: 本申请涉及一种基于深度强化学习的分布式计算卸载方法及装置。该方法:设置计算卸载框架,根据计算卸载框架建立通信模型和计算模型,通信模型用于计算终端设备的信号噪声干扰比,计算模型用于对终端设备进行本地计算和边缘计算,基于计算卸载框架、通信模型和计算模型,将计算卸载问题建模成马尔可夫决策过程,利用双Critic网络的深度确定性策略梯度算法对马尔可夫决策过程进行优化迭代求解,得到卸载决策。由于利用双Critic网络的深度确定性策略梯度算法来进行优化迭代求解,双Critic网络分别进行拟合,降低单个Critic网络进行拟合的复杂性,提高Critic网络的收敛速度,从而大大提高模型整体的收敛速度。

Patent Agency Ranking