-
公开(公告)号:CN113240098B
公开(公告)日:2022-05-17
申请号:CN202110666091.2
申请日:2021-06-16
Applicant: 湖北工业大学
Abstract: 本发明提供了一种基于混合门控神经网络的网络故障预测方法,将网络故障数据进行预处理转化为时间序列数据,其中,所述网络故障数据包括故障发生的时间节点信息和网络节点设备信息,每个时间序列数据表示当前时间段发生的所有故障类型;将产生故障的网络节点设备的反馈数据转化为文本标签数据;构建基于混合门控神经网络模型,所述混合门控神经网络模型包括嵌入层、混合门控层、邻域注意力层、自动编解码器层,将所述时间序列数据和所述文本标签数据输入所述基于混合门控神经网络模型,所述基于混合门控神经网络模型对网络故障数据中的数据进行预测。通过上述方法,可以挖掘故障数据之间的关联性,提高故障预测的精确性。
-
公开(公告)号:CN113240098A
公开(公告)日:2021-08-10
申请号:CN202110666091.2
申请日:2021-06-16
Applicant: 湖北工业大学
Abstract: 本发明提供了一种基于混合门控神经网络的网络故障预测方法,将网络故障数据进行预处理转化为时间序列数据,其中,所述网络故障数据包括故障发生的时间节点信息和网络节点设备信息,每个时间序列数据表示当前时间段发生的所有故障类型;将产生故障的网络节点设备的反馈数据转化为文本标签数据;构建基于混合门控神经网络模型,所述混合门控神经网络模型包括嵌入层、混合门控层、邻域注意力层、自动编解码器层,将所述时间序列数据和所述文本标签数据输入所述基于混合门控神经网络模型,所述基于混合门控神经网络模型对网络故障数据中的数据进行预测。通过上述方法,可以挖掘故障数据之间的关联性,提高故障预测的精确性。
-