-
公开(公告)号:CN108647723B
公开(公告)日:2020-10-13
申请号:CN201810448134.8
申请日:2018-05-11
Applicant: 湖北工业大学
Abstract: 本发明公开了一种基于深度学习网络的图像分类方法,首先建立与ResNext网络相同的提取特征部分,这部分通过堆叠卷积快来实现。根据参数设置,将每个参数相同的卷积块分为一节,并对每节部分进行同样大小卷积块的删减;然后在建立好网络的三节部分中提取每一部分网络得到的特征图,处理后获得最后的特征列向量;接着将最后的特征列向量与softmax分类器连接,完整整个网络;整个网络用已知数据库进行调节,保存调节好后的权值;最后将网络运用到新数据库时,用保存好的权值迁移学习,然后进行微调。本发明提出了一种新的卷积神经网络算法结构,并降低了参数储存量,缩短了网络训练时间,同时提高了识别效率。
-
公开(公告)号:CN108932550B
公开(公告)日:2020-04-24
申请号:CN201810666946.X
申请日:2018-06-26
Applicant: 湖北工业大学
Abstract: 本发明提出了一种密集稀疏密集算法的优化方法,包括初始Dense训练阶段、Fuzzy阶段、最后Dense阶段,该方法使用隶属度来度量网络权重与整个网络的关联程度,确定每个数据信息与群集之间的关联程度。本发明有如下有点:1、与其他经典网络相比,本发明提出的优化网络是基于学习权重的价值,并且计算出哪些网络权重是更重要的连接,这种筛选过程更好地提高了分类精度。2、本发明的框架迁移性相比传统DSD得到提高,可用于继Alexnet后的VGG16、vgg19等其余新型网络。3、针对传统的深度神经网络所需上万次迭代分类问题,本发明在数百次迭代以内能有效提高分类精度。
-
公开(公告)号:CN108304920B
公开(公告)日:2020-03-10
申请号:CN201810108120.1
申请日:2018-02-02
Applicant: 湖北工业大学
Abstract: 本发明涉及一种基于MobileNets优化多尺度学习网络的方法,本发明所述多尺度学习网络包括4部分,前3部分为相同的可分离卷积层,每个可分离卷积层后面连接batchnorm和ReLU,再连接池化层,最终与第4部分的全连接层和输出层连接,其中可分离卷积层包括3组卷积操作,具体网络结构为,第一组以3*3的深度卷积进行卷积操作,第二组连续用两个3*3的深度卷积进行卷积操作,然后再将第一组和第二组的输出进行加和操作,继续用1*1的点卷积进行卷积操作;第三组直接用1*1的点卷积进行卷积操作,接着把第一、二组和第三组的输出进行合并操作;通过实验对比发现,本发明构建的网络结构实验参数少,精度高,三组可分离卷积层结构稳定,实验效果最为理想。
-
公开(公告)号:CN108932550A
公开(公告)日:2018-12-04
申请号:CN201810666946.X
申请日:2018-06-26
Applicant: 湖北工业大学
Abstract: 本发明提出了一种密集稀疏密集算法的优化方法,包括初始Dense训练阶段、Fuzzy阶段、最后Dense阶段,该方法使用隶属度来度量网络权重与整个网络的关联程度,确定每个数据信息与群集之间的关联程度。本发明有如下有点:1、与其他经典网络相比,本发明提出的优化网络是基于学习权重的价值,并且计算出哪些网络权重是更重要的连接,这种筛选过程更好地提高了分类精度。2、本发明的框架迁移性相比传统DSD得到提高,可用于继Alexnet后的VGG16、vgg19等其余新型网络。3、针对传统的深度神经网络所需上万次迭代分类问题,本发明在数百次迭代以内能有效提高分类精度。
-
公开(公告)号:CN108734290B
公开(公告)日:2021-05-18
申请号:CN201810468476.6
申请日:2018-05-16
Applicant: 湖北工业大学
Abstract: 本发明公开一种基于注意力机制的卷积神经网络构建方法及应用,包括用于对图像进行预处理的基本卷积操作层,用于提取图像浅层显著特征的注意力机制层1,用于提取图像深层显著特征的注意力机制层2,用于提取图像最深层显著特征的注意力机制层3,用于将注意力机制层3中的2维输出数据捋平为1维的两个全连接层,以及SoftMax分类器。本发明将注意力机制融合进卷积神经网络中,有效的促进了卷积神经网络提取有效的信息从而提高网络性能,提升网络收敛效率和精度。
-
公开(公告)号:CN108304916B
公开(公告)日:2020-06-09
申请号:CN201810023210.0
申请日:2018-01-10
Applicant: 湖北工业大学
IPC: G06N3/04
Abstract: 本发明公开了一种结合注意机制与深度可分解卷积的卷积神经网络优化方法,是针对于手机等嵌入式设备提出的一种轻量级的神经网络优化方法。注意机制起源于人的大脑当中的注意力机制,人在接受信息时会将注意力集中到所需要的地方,加强对所需信息的提取,从而加快信息提取的效率。而我们知道深度可分解卷积网络本身就是用于移动和嵌入式视觉应用的一种网络结构,具有轻量级,低延迟,且精度尚可接受等特点。本发明将注意机制与深度可分解卷积两者有效结合,在低延迟的前提下,对特征提取加以改进,提高网络的精确度。
-
公开(公告)号:CN108647723A
公开(公告)日:2018-10-12
申请号:CN201810448134.8
申请日:2018-05-11
Applicant: 湖北工业大学
Abstract: 本发明公开了一种基于深度学习网络的图像分类方法,首先建立与ResNext网络相同的提取特征部分,这部分通过堆叠卷积快来实现。根据参数设置,将每个参数相同的卷积块分为一节,并对每节部分进行同样大小卷积块的删减;然后在建立好网络的三节部分中提取每一部分网络得到的特征图,处理后获得最后的特征列向量;接着将最后的特征列向量与softmax分类器连接,完整整个网络;整个网络用已知数据库进行调节,保存调节好后的权值;最后将网络运用到新数据库时,用保存好的权值迁移学习,然后进行微调。本发明提出了一种新的卷积神经网络算法结构,并降低了参数储存量,缩短了网络训练时间,同时提高了识别效率。
-
公开(公告)号:CN108734290A
公开(公告)日:2018-11-02
申请号:CN201810468476.6
申请日:2018-05-16
Applicant: 湖北工业大学
Abstract: 本发明公开一种基于注意力机制的卷积神经网络构建方法及应用,包括用于对图像进行预处理的基本卷积操作层,用于提取图像浅层显著特征的注意力机制层1,用于提取图像深层显著特征的注意力机制层2,用于提取图像最深层显著特征的注意力机制层3,用于将注意力机制层3中的2维输出数据捋平为1维的两个全连接层,以及SoftMax分类器。本发明将注意力机制融合进卷积神经网络中,有效的促进了卷积神经网络提取有效的信息从而提高网络性能,提升网络收敛效率和精度。
-
公开(公告)号:CN108304920A
公开(公告)日:2018-07-20
申请号:CN201810108120.1
申请日:2018-02-02
Applicant: 湖北工业大学
Abstract: 本发明涉及一种基于MobileNets优化多尺度学习网络的方法,本发明所述多尺度学习网络包括4部分,前3部分为相同的可分离卷积层,每个可分离卷积层后面连接batchnorm和ReLU,再连接池化层,最终与第4部分的全连接层和输出层连接,其中可分离卷积层包括3组卷积操作,具体网络结构为,第一组以3*3的深度卷积进行卷积操作,第二组连续用两个3*3的深度卷积进行卷积操作,然后再将第一组和第二组的输出进行加和操作,继续用1*1的点卷积进行卷积操作;第三组直接用1*1的点卷积进行卷积操作,接着把第一、二组和第三组的输出进行合并操作;通过实验对比发现,本发明构建的网络结构实验参数少,精度高,三组可分离卷积层结构稳定,实验效果最为理想。
-
公开(公告)号:CN108304916A
公开(公告)日:2018-07-20
申请号:CN201810023210.0
申请日:2018-01-10
Applicant: 湖北工业大学
IPC: G06N3/04
Abstract: 本发明公开了一种结合注意机制与深度可分解卷积的卷积神经网络优化方法,是针对于手机等嵌入式设备提出的一种轻量级的神经网络优化方法。注意机制起源于人的大脑当中的注意力机制,人在接受信息时会将注意力集中到所需要的地方,加强对所需信息的提取,从而加快信息提取的效率。而我们知道深度可分解卷积网络本身就是用于移动和嵌入式视觉应用的一种网络结构,具有轻量级,低延迟,且精度尚可接受等特点。本发明将注意机制与深度可分解卷积两者有效结合,在低延迟的前提下,对特征提取加以改进,提高网络的精确度。
-
-
-
-
-
-
-
-
-