-
公开(公告)号:CN113177784A
公开(公告)日:2021-07-27
申请号:CN202110604211.6
申请日:2021-05-31
Applicant: 清华大学
Abstract: 本申请实施例提供一种地址类型识别方法及装置,该方法包括:将无标签的第一地址数据作为预测模型的输入,以使预测模型输出第一地址数据对应的第一地址类型。根据第一地址数据以及第一地址数据对应的第一地址类型进行扩充处理,得到多个扩充地址数据,各扩充地址数据分别对应各自的扩充地址类型。根据多个扩充地址数据对预测模型进行多轮迭代训练,直至得到输出准确率大于或等于预设准确率的目标模型,其中,目标模型用于输出地址数据对应的地址类型。通过对获得地址类型的第一地址数据进行扩充处理,得到多个扩充地址数据,这扩大了有标签地址数据的数据量。同时,根据多个扩充地址数据对进预测模型进行多轮训练,提高了预测模型的预测准确率。
-
公开(公告)号:CN113177784B
公开(公告)日:2022-05-03
申请号:CN202110604211.6
申请日:2021-05-31
Applicant: 清华大学
Abstract: 本申请实施例提供一种地址类型识别方法及装置,该方法包括:将无标签的第一地址数据作为预测模型的输入,以使预测模型输出第一地址数据对应的第一地址类型。根据第一地址数据以及第一地址数据对应的第一地址类型进行扩充处理,得到多个扩充地址数据,各扩充地址数据分别对应各自的扩充地址类型。根据多个扩充地址数据对预测模型进行多轮迭代训练,直至得到输出准确率大于或等于预设准确率的目标模型,其中,目标模型用于输出地址数据对应的地址类型。通过对获得地址类型的第一地址数据进行扩充处理,得到多个扩充地址数据,这扩大了有标签地址数据的数据量。同时,根据多个扩充地址数据对进预测模型进行多轮训练,提高了预测模型的预测准确率。
-