一种用于传统纹样图像特征提取的图像分割优化方法

    公开(公告)号:CN118379318B

    公开(公告)日:2024-09-17

    申请号:CN202410351438.8

    申请日:2024-03-26

    申请人: 海南大学

    IPC分类号: G06F17/10 G06T7/136

    摘要: 本发明提供了一种用于传统纹样图像特征提取的图像分割优化方法,属于图像分割领域,包括:获取传统纹样图像的RGB颜色空间像素,采用二维傅里叶变换将图像从空间域转换到频域,得到复数形式的频谱,分析频谱,将图像中特征区域的频谱和非特征区域频谱分开;经傅里叶逆变换处理,将图像从频域转换回空间域;将空间域图像的像素值范围设置在0到255之间,并转换为灰度图像;改进雪鹅优化算法,利用改进的野鹅优化算法整定K‑means算法的分割阈值,得到K‑means算法分割传统纹样图像的最佳阈值K,利用最佳阈值对灰度图像进行分割,通过优化图像分割技术提高对传统纹样图像特征提取的精确性。

    一种用于传统纹样图像特征提取的图像分割优化方法

    公开(公告)号:CN118379318A

    公开(公告)日:2024-07-23

    申请号:CN202410351438.8

    申请日:2024-03-26

    申请人: 海南大学

    摘要: 本发明提供了一种用于传统纹样图像特征提取的图像分割优化方法,属于图像分割领域,包括:获取传统纹样图像的RGB颜色空间像素,采用二维傅里叶变换将图像从空间域转换到频域,得到复数形式的频谱,分析频谱,将图像中特征区域的频谱和非特征区域频谱分开;经傅里叶逆变换处理,将图像从频域转换回空间域;将空间域图像的像素值范围设置在0到255之间,并转换为灰度图像;改进雪鹅优化算法,利用改进的野鹅优化算法整定K‑means算法的分割阈值,得到K‑means算法分割传统纹样图像的最佳阈值K,利用最佳阈值对灰度图像进行分割,通过优化图像分割技术提高对传统纹样图像特征提取的精确性。