-
公开(公告)号:CN104362628A
公开(公告)日:2015-02-18
申请号:CN201410507505.7
申请日:2014-09-28
申请人: 浙江运达风电股份有限公司 , 国家电网公司 , 江苏省电力公司 , 中国电力科学研究院
CPC分类号: H02J3/01 , H02J3/1864 , H02J2003/001
摘要: 一种避免大型风电场发生谐振的控制方法,包括以下步骤:1)数据测量采集与处理分析,以风电场出口为测量点,采集电压和电流数据,依次进行高通滤波HPF、离散傅里叶分解DFT信号处理,利用戴维南等效定理,求出风电场系统的谐波阻抗,对计算的谐波阻抗结果进行分析,得到谐振频率;2)并联电容器投切容量逻辑计算,在某电容器容量下以切出、投入的次序判断,电场并网点阻抗值是否位于两个阻抗中间值的±30%范围内,直至满足要求为止;3)晶闸管控制电容器组合并入电网运行。以及提供一种避免大型风电场发生谐振的控制装置。本发明能有效避免出现高次谐波谐振、消除安全隐患。
-
公开(公告)号:CN104362628B
公开(公告)日:2016-05-25
申请号:CN201410507505.7
申请日:2014-09-28
申请人: 浙江运达风电股份有限公司 , 国家电网公司 , 江苏省电力公司 , 中国电力科学研究院
摘要: 一种避免大型风电场发生谐振的控制方法,包括以下步骤:1)数据测量采集与处理分析,以风电场出口为测量点,采集电压和电流数据,依次进行高通滤波HPF、离散傅里叶分解DFT信号处理,利用戴维南等效定理,求出风电场系统的谐波阻抗,对计算的谐波阻抗结果进行分析,得到谐振频率;2)并联电容器投切容量逻辑计算,在某电容器容量下以切出、投入的次序判断,电场并网点阻抗值是否位于两个阻抗中间值的±30%范围内,直至满足要求为止;3)晶闸管控制电容器组合并入电网运行。以及提供一种避免大型风电场发生谐振的控制装置。本发明能有效避免出现高次谐波谐振、消除安全隐患。
-
公开(公告)号:CN109936150A
公开(公告)日:2019-06-25
申请号:CN201711344492.6
申请日:2017-12-15
申请人: 国家电网公司 , 中国电力科学研究院有限公司 , 浙江运达风电股份有限公司 , 国网山西省电力公司电力科学研究院
IPC分类号: H02J3/24
摘要: 本发明提供了一种虚拟惯量控制的优化控制方法、装置及其控制器,所述方法包括:根据电网频率偏差量分别确定惯量响应转速控制计算附加转速值和惯量响应转矩控制计算附加转矩值;利用所述惯量响应转速控制计算附加转速值和惯量响应转矩控制计算附加转矩值修正双馈风电机组的虚拟惯量控制过程中的常规机组转矩控制。本发明提供的方法控制器及装置能够解决大量风电并网带来的电力系统运行稳定性的问题,且改善目前控制输入为频率变化率带来的噪声问题,进一步提高系统频率的稳定性。
-
公开(公告)号:CN109936150B
公开(公告)日:2024-02-02
申请号:CN201711344492.6
申请日:2017-12-15
申请人: 国家电网公司 , 中国电力科学研究院有限公司 , 浙江运达风电股份有限公司 , 国网山西省电力公司电力科学研究院
IPC分类号: H02J3/24
摘要: 本发明提供了一种虚拟惯量控制的优化控制方法、装置及其控制器,所述方法包括:根据电网频率偏差量分别确定惯量响应转速控制计算附加转速值和惯量响应转矩控制计算附加转矩值;利用所述惯量响应转速控制计算附加转速值和惯量响应转矩控制计算附加转矩值修正双馈风电机组的虚拟惯量控制过程中的常规机组转矩控制。本发明提供的方法控制器及装置能够解决大量风电并网带来的电力系统运行稳定性的问题,且改善目前控制输入为频率变化率带来的噪声问题,进一步提高系统频率的稳定性。
-
公开(公告)号:CN106499583B
公开(公告)日:2019-03-05
申请号:CN201610891035.8
申请日:2016-10-13
申请人: 浙江运达风电股份有限公司 , 国家电网公司 , 国网江苏省电力公司电力科学研究院
摘要: 一种基于RBF神经网络技术的风力发电机组系统辨识方法,包括以下步骤:步骤1获取系统辨识所需数据:根据风力发电机组系统特性,获取辨识所需的输入数据、输出数据;采样时间选取系统内部采样时间;转矩环辨识时输入信号为发电机转矩Tg,桨距环辨识时为桨叶节距角β,输出数据为发电机转速Ω;步骤2基于RBF技术进行系统辨识,描述风力发电机组系统,将转矩环或者桨距环设为非线性SISO系统,采用非线性扩展自回归华东平均模型NARMAX描述,RBF神经网络训练过程如下:信号前向传播:计算RBF神经网络的输出;误差反向传播:采用δ学习算法,调整RBF网络各层间的权值。本发明具有良好的运算速度和较低的计算量、稳定性较好。
-
公开(公告)号:CN106499583A
公开(公告)日:2017-03-15
申请号:CN201610891035.8
申请日:2016-10-13
申请人: 浙江运达风电股份有限公司 , 国家电网公司 , 国网江苏省电力公司电力科学研究院
CPC分类号: Y02E10/723 , F03D7/0224 , F03D7/0276 , F03D7/046 , G06N3/084
摘要: 一种基于RBF神经网络技术的风力发电机组系统辨识方法,包括以下步骤:步骤1获取系统辨识所需数据:根据风力发电机组系统特性,获取辨识所需的输入数据、输出数据;采样时间选取系统内部采样时间;转矩环辨识时输入信号为发电机转矩Tg,桨距环辨识时为桨叶节距角β,输出数据为发电机转速Ω;步骤2基于RBF技术进行系统辨识,描述风力发电机组系统,将转矩环或者桨距环设为非线性SISO系统,采用非线性扩展自回归华东平均模型NARMAX描述,RBF神经网络训练过程如下:信号前向传播:计算RBF神经网络的输出;误差反向传播:采用δ学习算法,调整RBF网络各层间的权值。本发明具有良好的运算速度和较低的计算量、稳定性较好。
-
公开(公告)号:CN113824146A
公开(公告)日:2021-12-21
申请号:CN202110981102.6
申请日:2021-08-25
申请人: 浙江运达风电股份有限公司 , 中国电力科学研究院有限公司
摘要: 本发明公开了一种基于风储一体化的风电机组暂态特性提升方法。是以提高风电机组电网适应性、电能质量为目的,本发明采用以下方案:当检测到风电机组的并网点电压处于低电压穿越时,风储一体化系统切换至低穿模式;当检测到风电机组的并网点电压处于高电压穿越时,风储一体化系统切换至高穿模式;当无触发信号时,风储一体化系统为电能质量模式。优点是基于风储一体化硬件拓扑对储能及风电机组的故障穿越控制算法、电能质量控制算法进行算法策略集成,实现风储一体化控制系统的统一协调,提升风电机组暂态特性。
-
公开(公告)号:CN111509773B
公开(公告)日:2021-08-17
申请号:CN202010334018.0
申请日:2020-04-24
申请人: 浙江运达风电股份有限公司 , 中国电力科学研究院有限公司
摘要: 本发明公开了一种适用于弱电网的电压源型风电机组故障穿越控制方法,提高弱网条件下电压源型双馈风机故障穿越性能、解决并网稳定问题,包括故障条件下功角失稳时控制策略切换、控制策略参数计算两个部分。本发明可使风电场的外特性从PQ节点(基于传统矢量控制)改变为Vθ节点,在电网故障时进行故障穿越,可以提供满足电网标准的无功电流,增强电网电压暂态稳定性。在系统功角失稳时切换控制策略,将Park变换角度切换成锁相环角度,避免功角失稳导致的系统不稳定,并且有效防止故障清除后的电网电压再次跌落甚至崩溃,加强故障清除后的电压稳定性。
-
公开(公告)号:CN110729756A
公开(公告)日:2020-01-24
申请号:CN201910871440.7
申请日:2019-09-16
申请人: 浙江运达风电股份有限公司 , 中国电力科学研究院有限公司
IPC分类号: H02J3/38 , H02J3/24 , H02P9/10 , H02P101/15
摘要: 本发明公开了一种基于有效风速估计的大型风电机组虚拟惯量控制方法,包括以下步骤:步骤s1:实时检测风电机转速、输出功率、桨距角、机舱风速和机舱振动加速度,通过有效风速估计方法,得到风速估计值;步骤s2:通过风速-功率关系曲线得到风电机组估计输出功率;步骤s3:在过渡过程控制模式中,计算虚拟惯量控制模式下吸收或释放的能量;步骤s4:计算风电机组对风轮惯性能量的补充或吸收;步骤s5:计算过渡过程控制模式所需的时间;步骤s6:计算过渡过程控制模式的风电机组输出功率设定值。本发明保证了机组在虚拟惯量响应控制模式和最大能量跟踪控制模式之间的平滑切换,避免了虚拟惯量响应控制恢复过程对电网频率造成较大二次冲击。
-
公开(公告)号:CN110690726B
公开(公告)日:2021-01-01
申请号:CN201910767654.X
申请日:2019-08-20
申请人: 浙江运达风电股份有限公司 , 中国电力科学研究院有限公司
摘要: 本发明为一种海上风电系统的无功优化及协调控制方法,包括以下步骤:确定无功调压约束条件并依据约束条件进行修正;将VSC‑HVDC风电场侧交流母线电压测量值与参考电压相减,差值输入PI调节器,得到所需要无功补偿量Qref;比较风电场侧交流母线电压与标称电压,根据风电场侧交流母线电压与标称电压的关系进行电压快速紧急控制、长时间尺度电压控制或电压快速紧急控制及长时间尺度控制结合进行。本发明的优点是:充分发挥WFVSC的电压快速调节特性,提高了海上风电场并网电压的稳定性;电压快速紧急控制和长时间尺度电压控制相结合,在两个时间层面上分阶段控制不同时间常数无功设备,优化了控制效果。
-
-
-
-
-
-
-
-
-