-
公开(公告)号:CN108710830A
公开(公告)日:2018-10-26
申请号:CN201810362559.7
申请日:2018-04-20
Applicant: 浙江工商大学
Abstract: 本发明公开了一种结合密集连接注意力金字塔残差网络和等距限制的人体3D姿势估计方法,该方法分解为辨别式人体2D姿势估计和生成式人体3D姿势估计两个部分。首先构建人体2D姿势估计模型,人体2D姿势估计模型包括注意力金字塔残差块和由若干注意力金字塔残差块组成的漏斗子网络,注意力金字塔残差块用于多尺度图像特征提取,漏斗子网络用于生成人体关节点热力图;为解决环境上下文信息未充分利用的问题,结合注意力机制和多尺度分析捕捉环境上下文特征;为解决梯度消失/梯度爆炸问题,密集连接网络结合上述注意力机制改进特征图辨识度。然后构建损失函数,引入等距限制项,通过最小化损失函数来拟合人体3D姿势。本发明方法在人体3D姿势估计任务上有明显优势。
-
公开(公告)号:CN108710830B
公开(公告)日:2020-08-28
申请号:CN201810362559.7
申请日:2018-04-20
Applicant: 浙江工商大学
Abstract: 本发明公开了一种结合密集连接注意力金字塔残差网络和等距限制的人体3D姿势估计方法,该方法分解为辨别式人体2D姿势估计和生成式人体3D姿势估计两个部分。首先构建人体2D姿势估计模型,人体2D姿势估计模型包括注意力金字塔残差块和由若干注意力金字塔残差块组成的沙漏子网络,注意力金字塔残差块用于多尺度图像特征提取,沙漏子网络用于生成人体关节点热力图;为解决环境上下文信息未充分利用的问题,结合注意力机制和多尺度分析捕捉环境上下文特征;为解决梯度消失/梯度爆炸问题,密集连接网络结合上述注意力机制改进特征图辨识度。然后构建损失函数,引入等距限制项,通过最小化损失函数来拟合人体3D姿势。本发明方法在人体3D姿势估计任务上有明显优势。
-