基于鲁棒性度量学习的非侵入式负荷识别方法

    公开(公告)号:CN118965009A

    公开(公告)日:2024-11-15

    申请号:CN202411467025.2

    申请日:2024-10-21

    Abstract: 本发明公开了一种基于鲁棒性度量学习的非侵入式负荷识别方法,包括如下步骤:步骤一,采集不同运行条件下不同电器类型的电流数据,用于组建元学习数据集;步骤二,使用神经网络架构搜索算法对特征提取网络进行学习,具体为对整体的特征提取网络框架进行定义;步骤三,构建基于神经网络架构搜索的度量学习网络框架;步骤四,使用步骤三中获得的度量学习模型对电器进行非侵入式负荷识别。本发明的基于鲁棒性度量学习的非侵入式负荷识别方法,使用神经网络架构搜索算法对度量学习网络的特征提取模块进行自动搜索,通过含噪数据集的训练,得到抗噪声能力最强的网络结构,提高最终度量学习模型的鲁棒性。

    基于鲁棒性度量学习的非侵入式负荷识别方法

    公开(公告)号:CN118965009B

    公开(公告)日:2025-02-11

    申请号:CN202411467025.2

    申请日:2024-10-21

    Abstract: 本发明公开了一种基于鲁棒性度量学习的非侵入式负荷识别方法,包括如下步骤:步骤一,采集不同运行条件下不同电器类型的电流数据,用于组建元学习数据集;步骤二,使用神经网络架构搜索算法对特征提取网络进行学习,具体为对整体的特征提取网络框架进行定义;步骤三,构建基于神经网络架构搜索的度量学习网络框架;步骤四,使用步骤三中获得的度量学习模型对电器进行非侵入式负荷识别。本发明的基于鲁棒性度量学习的非侵入式负荷识别方法,使用神经网络架构搜索算法对度量学习网络的特征提取模块进行自动搜索,通过含噪数据集的训练,得到抗噪声能力最强的网络结构,提高最终度量学习模型的鲁棒性。

Patent Agency Ranking