一种基于紧致性特征学习的空间卫星目标识别方法

    公开(公告)号:CN114373119A

    公开(公告)日:2022-04-19

    申请号:CN202210006296.2

    申请日:2022-01-05

    Abstract: 本发明公开了一种基于紧致性特征学习的空间卫星目标识别方法,涉及空间目标识别技术领域,提出一种将施加紧致性约束的卷积自编码器(Compact Convolutional Auto‑Encoder,CCAE)用于小样本下的空间卫星目标图像特征学习方法。针对现有深度学习方法在小样本空间卫星目标图像上特征学习能力不足的问题,通过对传统卷积自编码器损失函数施加紧致性约束,可同时最小化重建误差和类内样本误差,使所学特征空间中类内样本的距离缩小,同时扩大类间样本距离,进而提高特征判别性。因而,本发明提出了一种基于紧致性特征学习的空间卫星目标识别方法,较好地克服传统有监督模型在小样本下训练效率低下,易发生过拟合的缺点,从而有效提升了目标识别率。

Patent Agency Ranking