-
公开(公告)号:CN118673319A
公开(公告)日:2024-09-20
申请号:CN202410714775.9
申请日:2024-06-04
Applicant: 浙江大学 , 杭州高新区(滨江)区块链与数据安全研究院
IPC: G06F18/214 , G06N3/084
Abstract: 本发明公开了一种针对分割学习数据推断攻击的防御方法、电子设备、介质,应用于客户端,包括:获取隐私训练数据,随机生成C类数据,将每类数据打乱插入到隐私训练数据中作为客户端的训练数据集;将训练数据集输入至客户端模型中,输出得到中间特征;接收服务器模型下发的激活梯度;其中,所述激活梯度为服务器模型基于中间特征及对应的标签计算得到的损失值,根据损失值在服务器模型上进行后向传播更新服务器模型,输出激活梯度;基于激活梯度更新客户端模型;使得攻击者端将中间特征并输入至训练好的辅助模型h,输出扭曲目标特征空间Z;扭曲目标特征空间Z输入至训练好的解码器g‑1,无法得到反演重建结果,从而完成防御。