-
公开(公告)号:CN116843011A
公开(公告)日:2023-10-03
申请号:CN202310841509.8
申请日:2023-07-11
Applicant: 浙江大学
IPC: G06N3/084 , G06N3/088 , G06N3/0985 , G06N3/0464 , G06V10/82 , G06V10/764 , G06V10/774
Abstract: 基于卷积神经网络预训练模型的卷积核激活值正则化方法和系统,其方法包括:1)预训练卷积神经网络模型;2)计算卷积核产生的激活值的重要程度;3)正则化处理卷积核产生的激活值,产生新的激活值,使用新的激活值代替原先的激活值;4)基于正则化处理之后的卷积神经网络模型对图像进行分类。本发明找到卷积神经网络预训练模型中每个卷积核产生的激活值的重要程度,基于激活值的重要程度对卷积核激活值进行正则化处理。根据分类结果计算损失函数,利用损失函数对卷积神经网络的参数进行更新,提升预训练卷积神经网络的图像分类性能。
-
公开(公告)号:CN116363418A
公开(公告)日:2023-06-30
申请号:CN202310240413.6
申请日:2023-03-06
IPC: G06V10/764 , G06V10/774 , G06V10/82
Abstract: 本说明书公开了一种训练分类模型的方法、装置、存储介质及电子设备。本方法通过确定各子网络层对应的输入维度中的无效维度,确定了对分类模型的输出结果无效的各子网络层对应的无效维度上各计算节点输出的结果,根据这些输出的结果确定第一损失,根据基于训练样本标注确定的第二损失以及该第一损失,确定总损失,以总损失最小训练分类模型,减少了各子网络层对应的无效维度上各计算节点输出的结果对分类模型的输出结果的影响,提高了分类模型的分类准确性。
-
公开(公告)号:CN119091134A
公开(公告)日:2024-12-06
申请号:CN202411018850.4
申请日:2024-07-29
Applicant: 浙江大学软件学院(宁波)管理中心(宁波软件教育中心)
IPC: G06V10/26 , G06V10/82 , G06V10/774
Abstract: 本发明公开了一种基于深度语义分割优化模型的图像分割方法,特点是根据预设的训练参数,使用公开的语义分割数据集VOC2012的训练集根据交叉熵损失函数对设置有编码器的待训练的深度语义分割模型进行训练,获取每一轮次训练得出的权重文件,基于公开的语义分割数据集VOC2012的验证集对所有权重文件进行验证,筛选出mIoU值最高的权重文件,得到该权重文件所对应的预训练的深度语义分割模型;通过基于语义类别和区域边界偏差修正的优化方法或基于局部噪声消除的优化方法对预训练的深度语义分割模型进行优化,得到优化后的深度语义分割优化模型;将待检测的图像输入至深度语义分割优化模型中进行语义分割,得到语义分割结果;优点是提高了语义分割精度。
-
-