-
公开(公告)号:CN103473308A
公开(公告)日:2013-12-25
申请号:CN201310410604.9
申请日:2013-09-10
Applicant: 浙江大学
IPC: G06F17/30
Abstract: 本发明公开了一种基于最大间隔张量学习的高维多媒体数据分类方法。它包括如下步骤:1)建立多媒体数据的训练数据集;2)对训练数据集建模,进行分析,得到分类模型;3)根据用户查询数据集及分类模型,对查询数据集分类。本发明针对多媒体的高维性和结构性,利用张量来表达多媒体数据,并通过最大间隔分类器的方法,对高维的多媒体数据进行分类。在对多媒体数据进行分解分析的同时完成分类,不仅保留了多媒体数据中的结构信息,而且避免了传统的通过拼合的方法产生的高维数据所引发的“维数灾难”,因此比传统的多媒体数据分类方法更加准确,并易于计算。
-
公开(公告)号:CN103473308B
公开(公告)日:2017-02-01
申请号:CN201310410604.9
申请日:2013-09-10
Applicant: 浙江大学
IPC: G06F17/30
Abstract: 本发明公开了一种基于最大间隔张量学习的高维多媒体数据分类方法。它包括如下步骤:1)建立多媒体数据的训练数据集;2)对训练数据集建模,进行分析,得到分类模型;3)根据用户查询数据集及分类模型,对查询数据集分类。本发明针对多媒体的高维性和结构性,利用张量来表达多媒体数据,并通过最大间隔分类器的方法,对高维的多媒体数据进行分类。在对多媒体数据进行分解分析的同时完成分类,不仅保留了多媒体数据中的结构信息,而且避免了传统的通过拼合的方法产生的高维数据所引发的“维数灾难”,因此比传统的多媒体数据分类方法更加准确,并易于计算。
-