-
公开(公告)号:CN107463609A
公开(公告)日:2017-12-12
申请号:CN201710502909.0
申请日:2017-06-27
Applicant: 浙江大学
Abstract: 本发明公开了一种利用分层时空注意力编解码器网络机制来解决视频问答的方法。主要包括如下步骤:1)针对于一组视频、问题、答案训练集,训练时空注意力编码神经网络,学习出视频和问题的联合表达。2)对于编码完成的得到视频问题联合表达的神经网络的输出,再与相关答案一起训练出解码神经网络,用来针对于视频和问题的联合表达输出对应的自然语言的答案。相比于一般的视频问答解决方案,本发明利用时间注意力机制更好地利用了视频帧之间的序列关系,同时利用空间注意力机制精确了视频帧中的关键位置,则能够更准确地反映视频和问题的特性,并产生更加符合要求的答案。本发明在视频问答问题中所取得的效果相比于传统的方法更好。
-
公开(公告)号:CN107918652B
公开(公告)日:2020-10-02
申请号:CN201711129690.0
申请日:2017-11-15
Applicant: 浙江大学
IPC: G06F16/435 , G06F16/9535
Abstract: 本发明公开了一种利用多模态网络学习进行基于社交关系的电影推荐的方法。主要包括如下步骤:1)针对于一组视频、用户,构建含有其相关关系的SMR网络。并且针对于形成的SMR网络构建采样路径,并针对于采样路径中的电影及用户节点形成电影的综合表达与用户的映射表达,随后针对于预定义的损失函数进行更新,求得最终的用户表达与电影综合表达。2)对于得到的用户表达及电影的综合表达,产生对于用户的电影推荐。相比于一般的电影推荐解决方案,本发明提取了电影的多模态信息并且针对于用户形成了最终的有效用户表达,则能够更准确地反映用户与电影的特性,并产生更加符合要求的电影推荐。本发明在电影推荐问题中所取得的效果相比于传统的方法更好。
-
公开(公告)号:CN106599032A
公开(公告)日:2017-04-26
申请号:CN201610955220.9
申请日:2016-10-27
Applicant: 浙江大学
Abstract: 本发明公开了一种结合稀疏编码和结构感知机的文本事件抽取方法。包括如下步骤:1)将文本数据依照ACE或RichERE规范标注构建为训练样本;2)将提取得到的实体作为事件触发词和事件参数的候选实体,抽取文本特征;3)进一步抽取文本分布式词向量特征,学习稀疏编码特征;4)利用训练样本和提取的文本特征,训练结构感知机分类器,同时识别文本中与关于事件的触发词和参数;5)对于新的文本数据,经过步骤1后输入结构感知机分类器,抽取文本事件信息。本发明利用了基于神经网络的分布式词向量特征的稀疏编码表达,强化了文本特征,另一方面使用结构感知机模型同时来学习事件触发词和事件参与者的识别,据此获得了更好的事件抽取效果。
-
公开(公告)号:CN108170712B
公开(公告)日:2021-08-10
申请号:CN201711230595.X
申请日:2017-11-29
Applicant: 浙江大学
IPC: G06F16/9537 , G06Q50/00
Abstract: 本发明公开了一种利用包含社会地理信息的多媒体网络进行最大边界多媒体网络表达学习的方法。主要包括如下步骤:1)针对于一组社交网络用户及感兴趣地点和感兴趣地点的类别信息,构建包含用户、感兴趣地点和感兴趣地点类别信息之间相互关系的网络。2)卷积神经网络及单词映射网络获取感兴趣地点的综合表达,之后利用最大边界网络训练的方法结合用户及感兴趣地点的映射表达进行训练,得到令损失函数最小的用户及感兴趣地点的表达。相比于一般的用户可能感兴趣地点推荐解决方案,本发明利用了多媒体网络的特性及用户之间的相互关系与感兴趣地点的种类信息。本发明在用户可能感兴趣的地点的预测问题中所取得的效果相比于传统的方法更好。
-
公开(公告)号:CN107463609B
公开(公告)日:2020-06-19
申请号:CN201710502909.0
申请日:2017-06-27
Applicant: 浙江大学
IPC: G06F16/783 , G06F16/9032 , G06K9/62
Abstract: 本发明公开了一种利用分层时空注意力编解码器网络机制来解决视频问答的方法。主要包括如下步骤:1)针对于一组视频、问题、答案训练集,训练时空注意力编码神经网络,学习出视频和问题的联合表达。2)对于编码完成的得到视频问题联合表达的神经网络的输出,再与相关答案一起训练出解码神经网络,用来针对于视频和问题的联合表达输出对应的自然语言的答案。相比于一般的视频问答解决方案,本发明利用时间注意力机制更好地利用了视频帧之间的序列关系,同时利用空间注意力机制精确了视频帧中的关键位置,则能够更准确地反映视频和问题的特性,并产生更加符合要求的答案。本发明在视频问答问题中所取得的效果相比于传统的方法更好。
-
公开(公告)号:CN106599032B
公开(公告)日:2020-01-14
申请号:CN201610955220.9
申请日:2016-10-27
Applicant: 浙江大学
Abstract: 本发明公开了一种结合稀疏编码和结构感知机的文本事件抽取方法。包括如下步骤:1)将文本数据依照ACE或RichERE规范标注构建为训练样本;2)将提取得到的实体作为事件触发词和事件参数的候选实体,抽取文本特征;3)进一步抽取文本分布式词向量特征,学习稀疏编码特征;4)利用训练样本和提取的文本特征,训练结构感知机分类器,同时识别文本中与关于事件的触发词和参数;5)对于新的文本数据,经过步骤1后输入结构感知机分类器,抽取文本事件信息。本发明利用了基于神经网络的分布式词向量特征的稀疏编码表达,强化了文本特征,另一方面使用结构感知机模型同时来学习事件触发词和事件参与者的识别,据此获得了更好的事件抽取效果。
-
公开(公告)号:CN108388568A
公开(公告)日:2018-08-10
申请号:CN201810008072.9
申请日:2018-01-04
Applicant: 浙江大学
Abstract: 本发明公开了一种利用排序标准网络学习解决社区问答任务的方法。主要包括如下步骤:1)针对于一组用户、问题数据集,构建用户、问题之间相互关系的网络,并且针对于形成的网络,利用排序标准网络学习形成问题及用户的最终表达。2)根据得到的用户及问题的最终表达,对于某一问题推荐其最佳用户。相比于一般的问题推荐解决方案,本发明同时利用问题的语义表达信息与社区网站中的异构社区问答网络结构,并结合使用随机游走的方法来学习出社区问答网站中的问题及用户的表达。本发明在社交问答网站问题答案预测中所取得的效果相比于传统的方法更好。
-
公开(公告)号:CN108170712A
公开(公告)日:2018-06-15
申请号:CN201711230595.X
申请日:2017-11-29
Applicant: 浙江大学
Abstract: 本发明公开了一种利用包含社会地理信息的多媒体网络进行最大边界多媒体网络表达学习的方法。主要包括如下步骤:1)针对于一组社交网络用户及感兴趣地点和感兴趣地点的类别信息,构建包含用户、感兴趣地点和感兴趣地点类别信息之间相互关系的网络。2)卷积神经网络及单词映射网络获取感兴趣地点的综合表达,之后利用最大边界网络训练的方法结合用户及感兴趣地点的映射表达进行训练,得到令损失函数最小的用户及感兴趣地点的表达。相比于一般的用户可能感兴趣地点推荐解决方案,本发明利用了多媒体网络的特性及用户之间的相互关系与感兴趣地点的种类信息。本发明在用户可能感兴趣的地点的预测问题中所取得的效果相比于传统的方法更好。
-
公开(公告)号:CN107918652A
公开(公告)日:2018-04-17
申请号:CN201711129690.0
申请日:2017-11-15
Applicant: 浙江大学
IPC: G06F17/30
Abstract: 本发明公开了一种利用多模态网络学习进行基于社交关系的电影推荐的方法。主要包括如下步骤:1)针对于一组视频、用户,构建含有其相关关系的SMR网络。并且针对于形成的SMR网络构建采样路径,并针对于采样路径中的电影及用户节点形成电影的综合表达与用户的映射表达,随后针对于预定义的损失函数进行更新,求得最终的用户表达与电影综合表达。2)对于得到的用户表达及电影的综合表达,产生对于用户的电影推荐。相比于一般的电影推荐解决方案,本发明提取了电影的多模态信息并且针对于用户形成了最终的有效用户表达,则能够更准确地反映用户与电影的特性,并产生更加符合要求的电影推荐。本发明在电影推荐问题中所取得的效果相比于传统的方法更好。
-
-
-
-
-
-
-
-