-
公开(公告)号:CN111259938B
公开(公告)日:2022-04-12
申请号:CN202010023677.2
申请日:2020-01-09
Applicant: 浙江大学
IPC: G06V10/764 , G06K9/62
Abstract: 本发明公开了一种基于流形学习和梯度提升模型的图片偏多标签分类方法。从训练数据集构建一个加权图,通过求解以上第一最小化模型获得非负权重矩阵,根据加权图建立第二最小化模型并求解获得重构标签矩阵,根据重构标签矩阵将训练数据集换构造并训练二值相关模型,预测得标签矩阵;对图片的特征向量矩阵建立回归器最小化求解,用迭代预测结果矩阵增强特征向量矩阵,结合负梯度矩阵构造数据集并训练学习获得弱回归器,求和所有弱回归器,得最终回归器,对预待测图片处理判断。本发明能够充分地利用图片偏多标签数据之间的相关性来提升图片的多标签分类预测性能,可实现偏标签数据的消歧,提高了准确度和鲁棒性,其性能优于现有的图片偏多标签方法。
-
公开(公告)号:CN111259938A
公开(公告)日:2020-06-09
申请号:CN202010023677.2
申请日:2020-01-09
Applicant: 浙江大学
IPC: G06K9/62
Abstract: 本发明公开了一种基于流形学习和梯度提升模型的图片偏多标签分类方法。从训练数据集构建一个加权图,通过求解以上第一最小化模型获得非负权重矩阵,根据加权图建立第二最小化模型并求解获得重构标签矩阵,根据重构标签矩阵将训练数据集换构造并训练二值相关模型,预测得标签矩阵;对图片的特征向量矩阵建立回归器最小化求解,用迭代预测结果矩阵增强特征向量矩阵,结合负梯度矩阵构造数据集并训练学习获得弱回归器,求和所有弱回归器,得最终回归器,对预待测图片处理判断。本发明能够充分地利用图片偏多标签数据之间的相关性来提升图片的多标签分类预测性能,可实现偏标签数据的消歧,提高了准确度和鲁棒性,其性能优于现有的图片偏多标签方法。
-