-
公开(公告)号:CN115761453A
公开(公告)日:2023-03-07
申请号:CN202211285599.9
申请日:2022-10-20
Applicant: 浙江大学
IPC: G06V20/00 , G06V10/82 , G06N3/0464 , G06N3/08 , G06N5/04
Abstract: 一种面向电力巡检场景的基于特征匹配的轻量化单样本目标检测方法,包括下列步骤:1)基于掩码的基类别目标检测模型训练;2)新类别标注样本的数据增强;3)新类别标注样本的特征提取;4)模型在测试数据上的初步推理;5)使用传统特征修正推理结果。通过上述步骤,本发明实现了在每个类别标注样本极其稀少情况下(1个)的目标检测,并克服了传统单样本目标检测中依赖于测试图像类别先验知识的问题,同时还使用神经架构搜索,在尽量保持模型性能的同时减少模型的参数量。
-
公开(公告)号:CN115761453B
公开(公告)日:2023-08-04
申请号:CN202211285599.9
申请日:2022-10-20
Applicant: 浙江大学
IPC: G06V20/00 , G06V10/82 , G06N3/0464 , G06N3/08 , G06N5/04
Abstract: 基于特征匹配的轻量化单样本目标检测方法,包括下列步骤:1)基于掩码的基类别目标检测模型训练;2)新类别标注样本的数据增强;3)新类别标注样本的特征提取;4)模型在测试数据上的初步推理;5)使用传统特征修正推理结果。通过上述步骤,本发明实现了在每个类别标注样本极其稀少情况下(1个)的目标检测,并克服了传统单样本目标检测中依赖于测试图像类别先验知识的问题,同时还使用神经架构搜索,在尽量保持模型性能的同时减少模型的参数量。
-